refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 680 results
Sort by

Filters

Technology

Platform

accession-icon GSE53552
Gene expression profiling in psoriatic lesional and non-lesional skin [brodalumab treatment]
  • organism-icon Homo sapiens
  • sample-icon 78 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To explore the psoriasis phenotype and pathways involved in psoriasis, we characterized gene expression in lesional and non-lesional skin from psoriasis patients. Furthermore, we explored the effects of various doses of brodalumab on lesional skin over time.

Publication Title

Gene expression profiles normalized in psoriatic skin by treatment with brodalumab, a human anti-IL-17 receptor monoclonal antibody.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Treatment, Subject, Time

View Samples
accession-icon SRP183514
Usp22 controls multiple signaling pathways that are essential for vasculature formation in the mouse placenta
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Usp22, a component of the SAGA complex, is over expressed in highly aggressive cancers, but the normal functions of this deubiquitinase are not well defined. We determined that loss of Usp22 in mice results in embryonic lethality due to defects in extra-embryonic placental tissues and failure to establish proper vascular interactions with the maternal circulatory system. These phenotypes arise from abnormal gene expression patterns that reflect defective kinase signaling, including TGFß and several receptor tyrosine kinase (RTK) pathways. Usp22 deletion in endothelial cells and pericytes induced from embryonic stem cells also hinders these signaling cascades with detrimental effects on cell survival and differentiation as well as ability to form vessels. Our findings provide new insights to Usp22 functions during development that may offer clues to its role in disease states. Overall design: To determine changes in gene expression profile upon Usp22 loss in the developing placenta, RNA from day E9.5 placentas from wild-type and Ups22-/- mice s was isolated for deep sequencing, in triplicates and duplicates respectively. Key genes identified from RNAseq were validated by qRT-PCR using RNA from the same samples that were used for sequencing.

Publication Title

USP22 controls multiple signaling pathways that are essential for vasculature formation in the mouse placenta.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP057021
Myc and SAGA Rewire an Alternative Splicing Network During Early Somatic Cell Reprogramming [Reprogramming_RNASEQ]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Embryonic stem cells are maintained in a self-renewing and pluripotent state by multiple regulatory pathways. Pluripotent-specific transcriptional networks are sequentially reactivated as somatic cells reprogram to achieve pluripotency. How epigenetic regulators modulate this process and contribute to somatic cell reprogramming is not clear. Here we perform a functional RNAi screen to identify the earliest epigenetic regulators required for reprogramming. We identify components of the SAGA histone acetyltransferase complex, in particular Gcn5, as critical regulators of reprogramming initiation. Furthermore, we show in mouse pluripotent stem cells that Gcn5 strongly associates with Myc and that upon initiation of somatic reprogramming, Gcn5 and Myc form a positive feed forward loop that activates a distinct alternative splicing network and the early acquisition of pluripotency-associated splicing events. These studies expose a Myc-SAGA pathway that drives expression of an essential alternative splicing regulatory network during somatic cell reprogramming. Overall design: Examination of expression level changes at D0 and D2 MEFs

Publication Title

Myc and SAGA rewire an alternative splicing network during early somatic cell reprogramming.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP057001
Myc and SAGA Rewire an Alternative Splicing Network During Early Somatic Cell Reprogramming [mESCs_RNASEQ]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Embryonic stem cells are maintained in a self-renewing and pluripotent state by multiple regulatory pathways. Pluripotent-specific transcriptional networks are sequentially reactivated as somatic cells reprogram to achieve pluripotency. How epigenetic regulators modulate this process and contribute to somatic cell reprogramming is not clear. Here we perform a functional RNAi screen to identify the earliest epigenetic regulators required for reprogramming. We identify components of the SAGA histone acetyltransferase complex, in particular Gcn5, as critical regulators of reprogramming initiation. Furthermore, we show in mouse pluripotent stem cells that Gcn5 strongly associates with Myc and that upon initiation of somatic reprogramming, Gcn5 and Myc form a positive feed forward loop that activates a distinct alternative splicing network and the early acquisition of pluripotency-associated splicing events. These studies expose a Myc-SAGA pathway that drives expression of an essential alternative splicing regulatory network during somatic cell reprogramming. Overall design: Examination of expression level changes in Gcn5 KO vs WT mESCs

Publication Title

Myc and SAGA rewire an alternative splicing network during early somatic cell reprogramming.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE22180
In vitro carcinogenicity testing with Balb/c 3T3 Cells treated with various chemical carcinogens
  • organism-icon Mus musculus
  • sample-icon 60 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Background: Information on the carcinogenic potential of chemicals is only availably for High Production Volume products. There is however, a pressing need for alternative methods allowing for the chronic toxicity of substances, including carcinogenicity, to be detected earlier and more reliably. Here we applied advanced genomics to a cellular transformation assay to identify gene signatures useful for the prediction of risk for carcinogenicity. Methods: Genome wide gene expression analysis and qRT-PCR were applied to untransformed and transformed Balb/c 3T3 cells that exposed to 2, 4-diaminotoluene (DAT), benzo(a)pyrene (BaP), 2-Acetylaminoflourene (AAF) and 3-methycholanthrene (MCA) for 24h and 120h, at different concentrations, respectively. Furthermore, various bioinformatics tools were used to identify gene signatures predicting for the carcinogenic risk. Results: Bioinformatics analysis revealed distinct datasets for the individual chemicals tested while the number of significantly regulated genes increased with ascending treatment concentration of the cell cultures. Filtering of the data revealed a common gene signature that comprised of 13 genes whose regulation in cancer tissue has already been established. Strikingly, this gene signature was already identified prior to cell transformation therefore confirming the predictive power of this gene signature in identifying carcinogenic risks of chemicals. Comparison of fold changes determined by microarray analysis and qRT-PCR were in good agreement. Conclusion: Our data describes selective and commonly regulated carcinogenic pathways observed in an easy to use in vitro carcinogenicity assay. Here we defined a set of genes which can serve as a simply assay to predict the risk for carcinogenicity by use of an alternative in vitro testing strategy.

Publication Title

Toxicogenomics applied to in vitro carcinogenicity testing with Balb/c 3T3 cells revealed a gene signature predictive of chemical carcinogens.

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
accession-icon GSE72533
Reconstructing gene regulatory networks of tumorigenesis
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mapping 250K Nsp SNP Array (mapping250knsp), Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Reconstruction of gene regulatory networks reveals chromatin remodelers and key transcription factors in tumorigenesis.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE26208
Expression data from the seed coats of black (iRT) and brown (irT) soybean variant for alleles of the R locus
  • organism-icon Glycine max
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Soybean Genome Array (soybean)

Description

The seed coat of black (iRT) soybean with the dominant R allele begins to accumulate cyanic pigments at the transition stage of seed development (300 400 mg fresh seed weight), whereas the brown (irT) nearly-isogenic seed coat with the recessive r allele lacks cyanic pigments at all stages of seed development.

Publication Title

Combined analysis of transcriptome and metabolite data reveals extensive differences between black and brown nearly-isogenic soybean (Glycine max) seed coats enabling the identification of pigment isogenes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE72530
Reconstructing gene regulatory networks of tumorigenesis [genex]
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st), Affymetrix Mapping 250K Nsp SNP Array (mapping250knsp)

Description

The mechanistic links between transcription factors and the epigenetic landscape, which coordinate the deregulation of gene networks during cell transformation are largely unknown. We used an isogenic model of stepwise tumorigenic transformation of human primary cells to monitor the progressive deregulation of gene networks upon immortalization and oncogene-induced transformation. By combining transcriptome and epigenome data for each step during transformation and by integrating transcription factor (TF) - target gene associations, we identified 142 Tfs and 24 chromatin remodelers/modifiers (CRMs), which are preferentially associated with specific co-expression paths that originate from deregulated gene programming during tumorigenesis. These Tfs are involved in the regulation of divers processes, including cell differentiation, immune response and establishment/modification of the epigenome. Unexpectedly, the analysis of chromatin state dynamics revealed patterns that distinguish groups of genes, which are not only co-regulated but also functionally related. Further decortication of TF targets enabled us to define potential key regulators of cell transformation, which are engaged in RNA metabolism and chromatin remodelling. Our study suggests a direct implication of CRMs in oncogene-induced tumorigenesis and identifies new CRMs involved in this process. This is the first comprehensive view of gene regulatory networks that are altered during the process of stepwise human cellular tumorigenesis in a virtually isogenic system.

Publication Title

Reconstruction of gene regulatory networks reveals chromatin remodelers and key transcription factors in tumorigenesis.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP076704
The transcription factor, Nuclear factor, erythoid 2 (Nfe2), is a regulator of the oxidative stress response during Danio rerio development
  • organism-icon Danio rerio
  • sample-icon 54 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Development is a complex and well-defined process characterized by rapid cell proliferation and apoptosis. At this stage in life, a developmentally young organism is more sensitive to toxicants and other stressors when compared to an adult. In response to pro-oxidant exposure, members of the Cap’n’Collar (CNC) basic leucine zipper (b-ZIP) transcription factor family (including the Nfe2-related factors, Nrfs) activate the expression of genes that contribute to reduced toxicity. Here, we studied the role of the Nrf protein, Nfe2, in the developmental response to pro-oxidant exposure in the zebrafish. Following acute waterborne exposures to diquat or tert-buytlhydroperoxide (tBOOH) at three developmental stages, wildtype (WT) and nfe2 knockout (KO) embryos and larvae were morphologically scored and their transcriptomes sequenced. Overall design: Wildtype animals were on the AB background and an additional germline nfe2 knockout strain were created by disruption of the nfe2 reading frame. Waterborne exposures to either diquat or tBOOH were carried out at three different developmental stages: 2 hours post fertilization (hpf), 48hpf, and 96hpf in 3 pools of 30 embryos per condition. Animals were exposed to no treatment, 20µM diquat or 1mM tBOOH for a 4-hour dosing period. Total RNA was isolated from pooled animals and 50 bp, paired end, libraries were sequenced using the Illumina HiSeq 2000 platform, with approximately 25 million reads per sample. Reads were then aligned to the Ensembl GRCz10 zebrafish reference genome using Tophat2 and raw counts data normalized using DESeq2. Gene annotation was from Ensemble for GRCz10.

Publication Title

The transcription factor, Nuclear factor, erythroid 2 (Nfe2), is a regulator of the oxidative stress response during Danio rerio development.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE22605
Pluripotent embryonic stem cells and multipotent adult germline stem cells reveal similar transcriptomes including pluripotency-related genes
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

DNA microarray analysis was performed with mouse multipotent adult germline stem cells (maGSCs) and embryonic stem cells (ESCs) from different genetic backgrounds cultured under standard ESC culture conditions and under differentiation-promoting conditions by the withdrawal of Leukemia Inhibitory Factor (LIF) and treatment with Retinoic Acid (RA). The analyzed undifferentiated cell lines are very similar based on their global gene expression pattern and show 97-99% identity dependent on the analyzed background. Only 621 genes are differentially expressed in cells derived from mouse 129SV-background, and 72 genes show differences in expression in cells generated from transgenic Stra8-EGFP/Rosa26-LacZ-background. Both maGSCs and ESCs express the same genes involved in the regulation of pluripotency, and even show no differences in the expression level of these genes. When comparing maGSCs with previously published signature genes of other pluripotent cell lines we could find that maGSCs share a very similar gene expression pattern with embryonic germ cells (EGCs). Also after differentiation of maGSCs and ESCs the transcriptomes of the cell lines are nearly identical which suggests that both cell types differentiate spontaneously in a very similar way. This is the first study comparing ESCs and a pluripotent cell line derived from an adult organism (maGSCs) on transcriptome level.

Publication Title

Pluripotent embryonic stem cells and multipotent adult germline stem cells reveal similar transcriptomes including pluripotency-related genes.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact