refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1117 results
Sort by

Filters

Technology

Platform

accession-icon SRP186417
Intracellular Zn2+ transients modulate global gene expression in dissociated rat hippocampal neurons
  • organism-icon Rattus norvegicus
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Zinc (Zn2+) is an integral component of many proteins and has been shown to act in a regulatory capacity in different mammalian systems, including as a neurotransmitter in neurons throughout the brain. While Zn2+ plays an important role in modulating neuronal potentiation and synaptic plasticity, little is known about the signaling mechanisms of this regulation. In dissociated rat hippocampal neuron cultures, we used fluorescent Zn2+ sensors to rigorously define resting Zn2+ levels and stimulation-dependent intracellular Zn2+ dynamics, and we performed RNA-Seq to characterize Zn2+-dependent transcriptional effects upon stimulation. We found that relatively small changes in cytosolic Zn2+ during stimulation altered expression levels of 931 genes, and these Zn2+ dynamics induced transcription of many genes implicated in neurite expansion and synaptic growth. Additionally, while we were unable to verify the presence of synaptic Zn2+ in these cultures, we did detect the synaptic vesicle Zn2+ transporter ZnT3 and found it to be substantially upregulated by cytosolic Zn2+ increases. These results provide the first global sequencing-based examination of Zn2+-dependent changes in transcription and identify genes that may mediate Zn2+-dependent processes and functions. Overall design: 3 replicates of each of 3 conditions (KCl treatment, KCl/Zn treatment, KCl/TPA treatment), none of which are control conditions. KCl treatment was used as the reference condition for all comparisons. TPA = tris(2-pyridylmethyl)amine, a Zn2+ chelator.

Publication Title

Intracellular Zn<sup>2+</sup> transients modulate global gene expression in dissociated rat hippocampal neurons.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE15203
Histone H2B K111A
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Total RNA from three replicate cultures of wild-type and mutant strains was isolated and the expression profiles were determined using Affymetrix arrays. Comparisons between the sample groups allow the identification of genes regulated by histone H2B K111A mutant.

Publication Title

Novel functional residues in the core domain of histone H2B regulate yeast gene expression and silencing and affect the response to DNA damage.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE15202
Histone H2B R102A
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Total RNA from three replicate cultures of wild-type and mutant strains was isolated and the expression profiles were determined using Affymetrix arrays. Comparisons between the sample groups allow the identification of genes regulated by histone H2B R102A mutant.

Publication Title

Novel functional residues in the core domain of histone H2B regulate yeast gene expression and silencing and affect the response to DNA damage.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP071939
RNA-seq analysis of growth factor response of NHEKs to antimicrobial petide LL-37 and dsRNA mimic Poly(I:C)
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

In this study, we analyzed how non-coding double stranded RNA (dsRNAs) act as a damage associated molecular pattern (DAMP) in the skin, and how the human cathelicidin AMP LL-37 might influence growth factor production in response to this DAMP. Overall design: Each sample''s RNA was isolated form a single biological source of P6 NHEKs. In total there are 4 samples (non-replicates); Control (PBS treated), 1.75uM LL-37 treated, 0.1ug/ml Poly(I:C) treated, and co-treated with 1.75uM LL-37 and 0.1ug/ml Poly(I:C).

Publication Title

Non-coding Double-stranded RNA and Antimicrobial Peptide LL-37 Induce Growth Factor Expression from Keratinocytes and Endothelial Cells.

Sample Metadata Fields

Cell line, Treatment, Subject, Time

View Samples
accession-icon SRP191066
Gene expression of blood and cerebellum of Mecp2-null and WT male mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

In order to find a relationship between gene expression of blood and brain in Rett Syndrome (RTT), we performed RNA sequencing on from cerebella and blood of 7 week-old male Mecp2-null mice (a model of RTT) and WT controls. Overall design: Transcriptional profiles were generated from cerebellum and blood of 3 Mecp2-null and 3 WT 7 week-old male mice, by RNAseq performed on an Illumina HiSeq 2000 System, generating approximately 60 million 2x75bp paired-end reads/sample. Blood and cerebellum samples originate from the same animal

Publication Title

Transcriptomic Analysis of <i>Mecp2</i> Mutant Mice Reveals Differentially Expressed Genes and Altered Mechanisms in Both Blood and Brain.

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
accession-icon GSE41137
Impact of Ischemia and Procurement Conditions on Gene Expression in Renal Cell Carcinoma
  • organism-icon Homo sapiens
  • sample-icon 135 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Previous studies have shown that ischemia alters gene expression in normal and malignant tissues. There are no studies that evaluated effects of ischemia in renal tumors. This study examines the impact of ischemia and tissue procurement conditions on RNA integrity and gene expression in renal cell carcinoma.

Publication Title

Impact of ischemia and procurement conditions on gene expression in renal cell carcinoma.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE33205
Cancer Outlier Gene Profile Sets Elucidate Pathways and Patient-Specific Targets in Head and Neck Squamous Cell Carcinoma [Affymetrix HuEx1.0]
  • organism-icon Homo sapiens
  • sample-icon 69 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

This study integrated Affymetrix SNPchip data for CNV estimation, Affymetrix HuEx1.0 data for gene expression estimation, and Illumina HumanMethylation27k BeadChip data for promoter methylation to estimate pathway activity

Publication Title

Activation of the NOTCH pathway in head and neck cancer.

Sample Metadata Fields

Disease, Disease stage

View Samples
accession-icon GSE21687
Comparative genomics matches mutations and cells to generate faithful ependymoma models
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 275 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Genomic technologies have unmasked molecularly distinct subgroups among tumors of the same histological type; but understanding the biologic basis of these subgroups has proved difficult since their defining alterations are often numerous, and the cellular origins of most cancers remain unknown. We sought to decipher complex genomic data sets by matching the genetic alterations contained within these, with candidate cells of origin, to generate accurate disease models. Using an integrated genomic analysis we first identified subgroups of human ependymoma: a form of neural tumor that arises throughout the central nervous system (CNS). Validated alterations included amplifications and homozygous deletions of genes not yet implicated in ependymoma. Matching the transcriptomes of human ependymoma subgroups to those of distinct types of mouse radial glia (RG)neural stem cells (NSCs) that we identified previously to be a candidate cell of origin of ependymoma - allowed us to select RG types most likely to represent cells of origin of disease subgroups. The transcriptome of human cerebral ependymomas that amplify EPHB2 and delete INK4A/ARF matched most closely that of embryonic cerebral Ink4a/Arf-/- RG: remarkably, activation of EphB2 signaling in this RG type, but not others, generated highly penetrant ependymomas that modeled accurately the histology and transcriptome of one human cerebral tumor subgroup (subgroup D). Further comparative genomic analysis revealed selective alterations in the copy number and expression of genes that regulate neural differentiation, particularly synaptogenesis, in both mouse and human subgroup D ependymomas; pinpointing this pathway as a previously unknown target of ependymoma tumorigenesis. Our data demonstrate the power of comparative genomics to sift complex genetic data sets to identify key molecular alterations in cancer subgroups.

Publication Title

Cross-species genomics matches driver mutations and cell compartments to model ependymoma.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE24628
Subtypes of medulloblastoma have distinct developmental origins
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Medulloblastoma encompasses a collection of clinically and molecularly diverse tumor subtypes that together comprise the most common malignant childhood brain tumor. These tumors are thought to arise within the cerebellum, with approximately 25% originating from granule neuron precursor cells (GNPCs) following aberrant activation of the Sonic Hedgehog pathway (hereafter, SHH-subtype). The pathological processes that drive heterogeneity among the other medulloblastoma subtypes are not known, hindering the development of much needed new therapies. Here, we provide evidence that a discrete subtype of medulloblastoma that contains activating mutations in the WNT pathway effector CTNNB1 (hereafter, WNT-subtype), arises outside the cerebellum from cells of the dorsal brainstem. We found that genes marking human WNT-subtype medulloblastomas are more frequently expressed in the lower rhombic lip (LRL) and embryonic dorsal brainstem than in the upper rhombic lip (URL) and developing cerebellum. Magnetic resonance imaging (MRI) and intra-operative reports showed that human WNT-subtype tumors infiltrate the dorsal brainstem, while SHH-subtype tumors are located within the cerebellar hemispheres. Activating mutations in Ctnnb1 had little impact on progenitor cell populations in the cerebellum, but caused the abnormal accumulation of cells on the embryonic dorsal brainstem that included aberrantly proliferating Zic1+ precursor cells. These lesions persisted in all mutant adult mice and in 15% of cases in which Tp53 was concurrently deleted, progressed to form medulloblastomas that recapitulated the anatomy and gene expression profiles of human WNT-subtype medulloblastoma. We provide the first evidence that subtypes of medulloblastoma have distinct cellular origins. Our data provide an explanation for the marked molecular and clinical differences between SHH and WNT-subtype medulloblastomas and have profound implications for future research and treatment of this important childhood cancer.

Publication Title

Subtypes of medulloblastoma have distinct developmental origins.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE69306
Significant obesity associated gene expression changes are in the stomach but not intestines in obese mice
  • organism-icon Mus musculus
  • sample-icon 129 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The gastrointestinal (GI) tract can have significant impact on the regulation of the whole body metabolism and may contribute to the development of obesity and diabetes. To systemically elucidate the role of the GI tract in obesity, we performed a transcriptomic analyses in different parts of the GI tract of two obese mouse models: ob/ob and high-fat diet (HFD) fed mice. Compared to their lean controls, both obese mouse groups had significant amount of gene expression changes in the stomach (ob/ob: 959; HFD: 542), much more than the number of changes in the intestine. Despite the difference in genetic background, the two mouse models shared 296 similar gene expression changes in the stomach. Among those genes, some had known associations to obesity, diabetes and insulin resistance. In addition, the gene expression profile strongly suggested an increased gastric acid secretion in both obese mouse models, probably through an activation of the gastrin pathway. In conclusion, our data reveal a previously unknown dominant connection between the stomach and obesity.

Publication Title

Significant obesity-associated gene expression changes occur in the stomach but not intestines in obese mice.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact