refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 5 of 5 results
Sort by

Filters

Technology

Platform

accession-icon GSE47032
Genome-wide analysis of differentially expressed genes and splicing isoforms in clear cell Renal Cell Carcinoma
  • organism-icon Homo sapiens
  • sample-icon 40 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

In this study we performed a genome wide analysis of the entire complement of mRNAs in clear cell renal cell carcinomas (ccRCC) by means of the Affymetrix Exon Array platform. The analyses were performed both at gene and exon level.

Publication Title

Genome-wide analysis of differentially expressed genes and splicing isoforms in clear cell renal cell carcinoma.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
accession-icon GSE73871
Targeting the SIN3A-PF1 Interaction inhibits Epithelial to Mesenchymal Transition and Maintenance of a Stem Cell Phenotype in Triple Negative Breast Cancer
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Targeting the SIN3A-PF1 interaction inhibits epithelial to mesenchymal transition and maintenance of a stem cell phenotype in triple negative breast cancer.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE73278
Targeting the SIN3A-PF1 Interaction inhibits Epithelial to Mesenchymal Transition and Maintenance of a Stem Cell Phenotype in Triple Negative Breast Cancer (Expression)
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Triple negative breast cancer (TNBC) is characterized by a poorly differentiated phenotype and limited treatment options. Aberrant epigenetics in this subtype represent a potential therapeutic opportunity, but a better understanding of the mechanisms contributing to the TNBC pathogenesis is required. The SIN3 molecular scaffold performs a critical role in multiple cellular processes, including epigenetic regulation, and has been identified as a potential therapeutic target. Using a competitive peptide corresponding to the SIN3 interaction domain of MAD (Tat-SID), we investigated the functional consequences of selectively blocking the paired amphipathic helix (PAH2) domain of SIN3. Here, we report the identification of the SID-containing adaptor PF1 as a factor required for maintenance of the TNBC stem cell phenotype and epithelial to mesenchymal transition (EMT). Tat-SID peptide blocked the interaction between SIN3A and PF1, leading to epigenetic modulation and transcriptional downregulation of TNBC stem cell and EMT markers. Importantly, Tat-SID treatment led to a reduction in primary tumor growth and disseminated metastatic disease in vivo. In support of these findings, knockdown of PF1 expression phenocopied treatment with Tat-SID both in vitro and in vivo. These results demonstrate a critical role for a complex containing SIN3A and PF1 in TNBC and provide a rational for its therapeutic targeting.

Publication Title

Targeting the SIN3A-PF1 interaction inhibits epithelial to mesenchymal transition and maintenance of a stem cell phenotype in triple negative breast cancer.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE67438
Selective inhibition of SIN3 corepressor with avermectins as a novel therapeutic strategy in triple negative breast cancer
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Triple negative breast cancers (TNBC) lacking estrogen, progesterone and HER2 receptors account for 10-20% of breast cancer and are indicative of poor prognosis. The development of effective treatment strategies therefore represents a pressing unmet clinical need. We previously identified a molecularly-targeted approach to target aberrant epigenetics of TNBC using a peptide corresponding to the SIN3 interaction domain (SID) of MAD. SID peptide selectively blocked binding of SID-containing proteins to the paired -helix (PAH2) domain of SIN3, resulting in epigenetic and transcriptional modulation of genes associated with epithelial-mesenchymal transition (EMT). To find small molecule inhibitor (SMI) mimetics of SID peptide we performed an in silico screen for PAH2 domain-binding compounds. This led to the identification of the avermectin macrocyclic lactone derivatives selamectin and ivermectin (Mectizan) as candidate compounds. Both selamectin and ivermectin phenocopied the effects of SID peptide to block SIN3-PAH2 interaction with MAD, induce expression of CDH1 and ESR1 and restore tamoxifen sensitivity in MDA-MB-231 human and MMTV-Myc mouse TNBC cells in vitro. Treatment with selamectin or ivermectin led to transcriptional modulation of genes associated with EMT and maintenance of a cancer stem cell phenotype in TNBC cells. This resulted in impairment of clonogenic self-renewal in vitro and inhibition of tumor growth and metastasis in vivo. Underlining the potential of avermectins in TNBC, pathway analysis revealed that selamectin also modulated the expression of therapeutically-targetable genes. Consistent with this, an unbiased drug screen in TNBC cells identified selamectin-induced sensitization to a number of drugs, including those targeting modulated genes.

Publication Title

Selective Inhibition of SIN3 Corepressor with Avermectins as a Novel Therapeutic Strategy in Triple-Negative Breast Cancer.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP028291
Micro-RNA sequencing from 78 adrenocortical carcinomas
  • organism-icon Homo sapiens
  • sample-icon 78 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Micro-RNA sequencing of adrenocortical tumors and normal adrenal samples. Overall design: miRNA sequencing of 45 adrenocortical carcinomas (ACC), 30 adrenocortical adenomas (ACA) and 3 normal adrenal samples.

Publication Title

Integrated genomic characterization of adrenocortical carcinoma.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact