refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 3078 results
Sort by

Filters

Technology

Platform

accession-icon SRP091455
Molecular profiling of dorsal raphe nucleus Vgat and VGLUT3-expressing neurons
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Hunger, driven by negative energy balance, elicits the search for and consumption of food. In mammals, this is orchestrated principally through the activity of neurons in the hypothalamus, direct manipulation of which can potently drive food intake. However, the neural circuits outside of the hypothalamus that control feeding are poorly understood. Here, we identify two functionally opponent cell types within the dorsal raphe nucleus (DRN), marked by the vesicular transporters for GABA (Vgat) or glutamate (VGLUT3), that project to many known feeding centers and rapidly control feeding. We find that DRNVgat neurons drive, while DRNVGLUT3 neurons suppress, food intake. Furthermore, through the development and application of cell type-specific molecular profiling technologies, we identify many differentially expressed transmembrane receptors, which may represent unique druggable targets. Local application of agonists for these receptors potently modulates feeding, recapitulating the effects of cell-specific manipulations. Together, these data establish a key role for the DRN in controlling food intake and add an important anatomic site that controls energy balance. Overall design: Paired - Inputs and IPs; Unpaired for Vgat/VGLUT3 comparison

Publication Title

Identification of a Brainstem Circuit Controlling Feeding.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE65415
Expression analysis of EDS1-NLS
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

TIR-type nucleotide-binding leucine-rich repeat domain proteins (TNLs) constitute one major group of immune receptors in dicotyledonous plants. Under normal conditions, TNLs can detect non-self or modified-self within the plant cytoplasm to activate immune signaling characterized by extensive transcriptional reprogramming and efficiently counteracting pathogen infection. At the same time, TNLs, in negative epistatic interaction with a second endogeneous locus or allele are causal for induction of autoimmunity or hybrid necrosis. Both native, pathogen-induced TNL responses and autoimmunity are fully dependent on the plant-specific lipase-like protein EDS1, which is a central integrator for all TNL-mediated responses. EDS1 signals within structurally similar, but spatially distinct complexes with PAD4 and SAG101. We here analyzed stable transgenic lines expressing an EDS1 fusion with enforced nuclear localization. Even in absence of SAG101, nuclear-localized EDS1-PAD4 complexes are fully sufficient to function in basal and effector-triggered immunity. Furthermore, we show that nuclear EDS1, when expressed to high levels, can induce autoimmuity in combination with an RPP1-like gene cluster from ecotype Ler. RPP1-like genes are also implicated in several cases of hybrid necrosis, and we can identify the RPP1 paralog R8 as causal for autoimmunity induction by nuclear EDS1 and a previously characterized, EMS-induced mutation. This highlights the important role of EDS1-family proteins in the nuclear compartment in different immune-like responses.

Publication Title

Arabidopsis thaliana DM2h (R8) within the Landsberg RPP1-like Resistance Locus Underlies Three Different Cases of EDS1-Conditioned Autoimmunity.

Sample Metadata Fields

Treatment, Time

View Samples
accession-icon GSE72462
TGF contributes to impaired exercise response by suppression of mitochondrial key regulators in skeletal muscle
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

substantial number of people at risk to develop type 2 diabetes could not improve insulin sensitivity by physical training intervention. We studied the mechanisms of this impaired exercise response in 20 middle-aged individuals who performed a controlled eight weeks cycling and walking training at 80 % individual VO2max. Participants identified as non-responders in insulin sensitivity (based on Matsuda index) did not differ in pre-intervention parameters compared to high responders. The failure to increase insulin sensitivity after training correlates with impaired up-regulation of mitochondrial fuel oxidation genes in skeletal muscle, and with the suppression of the upstream regulators PGC1 and AMPK2. The muscle transcriptome of the non-responders is further characterized by an activation of TGF and TGF target genes, which is associated with increases in inflammatory and macrophage markers. TGF1 as inhibitor of mitochondrial regulators and insulin signaling is validated in human skeletal muscle cells. Activated TGF1 signaling down-regulates the abundance of PGC1, AMPK2, mitochondrial transcription factor TFAM, and of mitochondrial enzymes. Thus, increased TGF activity in skeletal muscle can attenuate the improvement of mitochondrial fuel oxidation after training and contribute to the failure to increase insulin sensitivity.

Publication Title

TGF-β Contributes to Impaired Exercise Response by Suppression of Mitochondrial Key Regulators in Skeletal Muscle.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE60888
Gene expression profile of cell lines 2106T, H1975 and MeWo after knockdown of PAEP.
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gene expression profile was analyzed after knockdown of PAEP in lung cancer cell lines 2106T and H1975 as well as in skin cancer cell line MeWo.

Publication Title

Glycodelin: A New Biomarker with Immunomodulatory Functions in Non-Small Cell Lung Cancer.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE15210
Gene expression profiles of mono- and biallelic CEBPA mutations in cytogenetically normal AML
  • organism-icon Homo sapiens
  • sample-icon 61 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Purpose: CEBPA mutations are found as either biallelic (biCEBPA) or monoallelic (moCEBPA). We set out to explore whether the kind of CEBPA mutation is of prognostic relevance in cytogenetically normal AML (CN-AML).

Publication Title

Acute myeloid leukemia with biallelic CEBPA gene mutations and normal karyotype represents a distinct genetic entity associated with a favorable clinical outcome.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE23751
In Vitro Transcriptome Analysis of Porcine Plexus Epithelial Cells in Response to Streptococcus suis: Functions of the Choroid Plexus in Antimicrobial Defense
  • organism-icon Sus scrofa
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

We used microarrays to detail the global gene expression changes following apical infection of porcine choroid plexus epithelial cells (PCPEC) with Streptococcus suis (S. suis)

Publication Title

In vitro transcriptome analysis of porcine choroid plexus epithelial cells in response to Streptococcus suis: release of pro-inflammatory cytokines and chemokines.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE87073
Contact of myeloma cells induces a characteristic transcriptome signature in skeletal precursor cells - Implications for myeloma bone disease
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In this study we analyzed the myeloma cell contact-mediated changes on the transcriptome of skeletal precursor cells. Therefore, human mesenchymal stem cells (MSC) and osteogenic precursor cells (OPC) were co-cultured with the representative myeloma cell line INA-6 for 24 h. Afterwards, MSC and OPC were separated from INA-6 cells by fluorescence activated cell sorting. Total RNA of MSC and OPC fractions was used for whole genome array analysis.

Publication Title

Contact of myeloma cells induces a characteristic transcriptome signature in skeletal precursor cells -Implications for myeloma bone disease.

Sample Metadata Fields

Sex, Age, Specimen part, Disease stage

View Samples
accession-icon GSE87477
JQ1 treatment of germ cell cancer cells induces differentiation, apoptosis and cell cycle arrest
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Type II testicular germ cell cancers (GCC) are the most frequently diagnosed tumors in young men (20 - 40 years) and are classified as seminoma or non-seminoma. GCCs are commonly treated by orchiectomy and chemo- or radiotherapy. However, a subset of metastatic non-seminomas display only incomplete remission or relapse and require novel treatment options. Recent studies have shown effective application of the small-molecule inhibitor JQ1 in tumor therapy, which interferes with the function of bromodomain and extra-terminal (BET)-proteins. Here, we demonstrate that upon JQ1 doses 250 nM GCC cell lines and Sertoli cells display compromised survival and induction of cell cycle arrest. JQ1 treated GCC cell lines display upregulation of genes indicative for DNA damage and a cellular stress response. Additionally, downregulation of pluripotency factors and induction of mesodermal differentiation was detected. GCCs xenografted in vivo showed a reduction in tumor size, proliferation and angiogenesis when subjected to JQ1 treatment. The combination of JQ1 and the histone deacetylase inhibitor romidepsin further enhanced the apoptotic effect in vitro and in vivo. Thus, we propose that JQ1 alone, or in combination with romidepsin may serve as a novel therapeutic option for GCCs.

Publication Title

The bromodomain inhibitor JQ1 triggers growth arrest and apoptosis in testicular germ cell tumours in vitro and in vivo.

Sample Metadata Fields

Specimen part, Cell line, Time

View Samples
accession-icon GSE107912
BV6 induces an early wave of gene expression via NF-B and AP-1 and a second wave via TNF/TNFR1 signaling
  • organism-icon Homo sapiens
  • sample-icon 48 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Smac mimetics are considered as promising cancer therapeutics, but little is yet known about how they alter gene expression. In this study we used an unbiased genome-wide expression array to investigate Smac mimetic BV6-induced gene regulation in breast cancer cell lines. Kinetic analysis revealed that BV6 alters gene expression in two waves. The first wave primarily involves NF-B- and AP-1 families of transcription factors, while the second wave largely depends on tumor necrosis factor receptor 1 (TNFR1) signaling. Interestingly, disrupting auto-/paracrine tumor necrosis factor- (TNF)/ (TNFR1) signaling by knockdown of TNFR1 strongly attenuates the BV6-induced second wave of gene expression and upregulation of many pathways including NF-B signaling, apoptosis and immune signalling, but not MAPK signaling pathways. Consistently, BV6 stimulates phosphorylation of cJun, a marker of MAPK cascade activation, irrespective of the presence or absence of the TNF blocking antibody Enbrel. We show here in a comprehensive overview that BV6-induced gene expression in breast cancer cells takes place in a time- as well as TNFR1-dependent manner.

Publication Title

Smac mimetic induces an early wave of gene expression via NF-κB and AP-1 and a second wave via TNFR1 signaling.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE35478
Characterization of colon cancer cells: a functional approach characterizing CD133 as a potential stem cell marker
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background: Isolation and characterization of tumourigenic colon cancer initiating cells may help to develop novel diagnostic and therapeutic procedures. Methods: We characterized a panel of fourteen human colon carcinoma cell lines and their corresponding xenografts for the surface expression of different potential stem cell markers: CD133, CD24, CD44, CDCP1 and CXCR4. In five cell lines and nine xenografts mRNA expression of the investigated markers was determined. Tumour growth behaviour of CD133+, CD133- and unsorted SW620 cells was evaluated in vivo. Results: All surface markers showed distinct expression patterns in the examined tumours. Analyses of the corresponding xenografts revealed a significant reduction of cell numbers expressing the investigated markers. CD44 and CXCR4 mRNA expression correlated within the cell line panel and CD44 and CDCP1 within the xenograft panel, respectively. Small subpopulations of double and triple positive cells could be described. SW620 showed significantly higher take rates and shorter doubling times in vivo when sorted for CD133 positivity. Conclusion: Our data support the hypothesis of a small subset of cells with stem cell-like properties characterized by a distinct surface marker profile. In vivo growth kinetics give strong relevance for an important role of CD133 within the mentioned surface marker profile.

Publication Title

Characterization of colon cancer cells: a functional approach characterizing CD133 as a potential stem cell marker.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact