refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 193 results
Sort by

Filters

Technology

Platform

accession-icon GSE49800
Effects of CPAP Therapy on Leukocyte Gene Expression
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Rationale: Obstructive sleep apnea (OSA) has been associated with a number of chronic disorders that may improve with effective therapy. However, the molecular pathways affected by continuous positive airway pressure (CPAP) treatment are largely unknown. We sought to assess the system-wide consequences of CPAP therapy by transcriptionally profiling peripheral blood leukocytes (PBLs). Methods: Subjects diagnosed with severe OSA were treated with CPAP, and whole-genome expression measurement of PBLs was performed at baseline and following therapy. We used Gene Set Enrichment Analysis (GSEA) to identify gene sets that were differentially enriched. Network analysis was then applied to identify key drivers of pathways influenced by CPAP. Results: 18 subjects with severe OSA (apnea hypopnea index 30 events/hour) underwent CPAP therapy and microarray analysis of their PBLs. Treatment with CPAP improved AHI, daytime sleepiness and blood pressure but did not affect anthropometric measures. GSEA revealed a number of enriched gene sets, many of which were involved in neoplastic processes and displayed down-regulated expression patterns in response to CPAP. Network analysis identified several densely connected genes that are important modulators of cancer and tumor growth. Conclusions: Effective therapy of OSA with CPAP is associated with alterations in circulating leukocyte gene expression. Functional enrichment and network analyses highlighted transcriptional suppression in cancer-related pathways suggesting potentially novel mechanisms linking OSA with neoplastic signatures.

Publication Title

Treatment of obstructive sleep apnea alters cancer-associated transcriptional signatures in circulating leukocytes.

Sample Metadata Fields

Treatment, Subject

View Samples
accession-icon GSE29083
Knockout of heterotrimeric signaling G protein beta5 impaires brain development and causes severe neurologic dysfunction in mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Knockout of G protein β5 impairs brain development and causes multiple neurologic abnormalities in mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE29082
Gene expression analysis of non-cerebellar portion of Gb5-deficient mice brain
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Gb5 is a divergent, evolutionarily-conserved, member of the heterotrimeric G protein b subunit family that is expressed principally in brain and neuronal tissue. Among Gb isoforms, Gb5 is unique in its ability to heterodimerize with members of the R7 subfamily of the regulator of G protein signaling (RGS) proteins that contain G protein-g like (GGL) domains. Previous studies employing Gb5 knockout mice have shown that Gb5 is an essential stabilizer of GGL domain-containing RGS proteins and regulates the deactivation of retinal phototransduction and the proper functioning of retinal bipolar cells. The purpose of this study is to better understand the functions of Gb5 in the brain outside the visual system by employing molecular biology, immunohistochemistry and confocal imaging technologies. We show here that mice lacking Gb5 have a markedly abnormal neurologic phenotype that includes neurobehavioral developmental delay, wide-based gait, motor learning and coordination deficiencies, and hyperactivity. Using immunohistochemical analysis and a green fluorescent reporter of Purkinje cell maturation we show that the phenotype of Gb5-deficient mice includes, in part, delayed development of the cerebellar cortex, an abnormality that likely contributes to the neurobehavioral phenotype. Multiple neuronally-expressed genes are dysregulated in non-cerebellar portion of Gb5 KO mice.

Publication Title

Knockout of G protein β5 impairs brain development and causes multiple neurologic abnormalities in mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE29081
Cerebellar gene expression analysis of Gb5-deficient mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Gb5 is a divergent, evolutionarily-conserved, member of the heterotrimeric G protein b subunit family that is expressed principally in brain and neuronal tissue. Among Gb isoforms, Gb5 is unique in its ability to heterodimerize with members of the R7 subfamily of the regulator of G protein signaling (RGS) proteins that contain G protein-g like (GGL) domains. Previous studies employing Gb5 knockout mice have shown that Gb5 is an essential stabilizer of GGL domain-containing RGS proteins and regulates the deactivation of retinal phototransduction and the proper functioning of retinal bipolar cells. The purpose of this study is to better understand the functions of Gb5 in the brain outside the visual system by employing molecular biology, immunohistochemistry and confocal imaging technologies. We show here that mice lacking Gb5 have a markedly abnormal neurologic phenotype that includes neurobehavioral developmental delay, wide-based gait, motor learning and coordination deficiencies, and hyperactivity. Using immunohistochemical analysis and a green fluorescent reporter of Purkinje cell maturation we show that the phenotype of Gb5-deficient mice includes, in part, delayed development of the cerebellar cortex, an abnormality that likely contributes to the neurobehavioral phenotype. Multiple neuronally-expressed genes are dysregulated in cerebellum of Gb5 KO mice.

Publication Title

Knockout of G protein β5 impairs brain development and causes multiple neurologic abnormalities in mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE29641
Hypoxia transcriptomic time-series data in three different cancer cell lines
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Tumour hypoxia exhibits a highly dynamic spatial and temporal distribution and is associated with increased malignancy and poor prognosis. Assessment of time-dependent gene-expression changes in response to hypoxia may thus provide additional biological insights and help with patient prognosis.

Publication Title

The prognostic value of temporal in vitro and in vivo derived hypoxia gene-expression signatures in breast cancer.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE20100
Expression data from primary MEF lacking either HDAC1, HDAC2 or both
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Previously published data suggested some redundant functions between HDAC1 and HDAC2 in mouse. To test this hypothesis, we used microarrays to have a genome wide analysis at the transcription level of primary MEFs lacking HDAC1, HDAC2.

Publication Title

Histone deacetylases 1 and 2 act in concert to promote the G1-to-S progression.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE30076
Epigenetic repression of cardiac progenitor gene expression by Ezh2 is required for postnatal cardiac homeostasis
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Adult-onset diseases can be associated with in utero events, but mechanisms for such temporally distant dysregulation of organ function remain unknown. The polycomb histone methyltransferase, Ezh2, stabilizes transcription by depositing repressive histone marks during development that persist into adulthood, but the function of Ezh2-mediated transcriptional stability in postnatal organ homeostasis is not understood. Here, we show that Ezh2 stabilizes the postnatal cardiac gene expression program and prevents cardiac pathology, primarily by repressing the homeodomain transcription factor Six1 in differentiating cardiac progenitors. Loss of Ezh2 in embryonic cardiac progenitors, but not in differentiated cardiomyocytes, resulted in postnatal cardiac pathology, including cardiomyocyte hypertrophy and fibrosis. Loss of Ezh2 caused broad derepression of skeletal muscle genes, including the homeodomain transcription factor Six1, which is expressed in cardiac progenitors but is normally silenced upon cardiac differentiation. Many of the deregulated genes are direct Six1 targets, implying a critical requirement for stable repression of Six1 in cardiac myocytes. Indeed, upon de-repression, Six1 promotes cardiac pathology, as it was sufficient to induce cardiac hypertrophy. Furthermore, genetic reduction of Six1 levels almost completely rescued the pathology of Ezh2-deficient hearts. Thus, repression of a single transcription factor in cardiac progenitors by Ezh2 is essential for stability of the adult heart gene expression program and homeostasis. Our results suggest that epigenetic dysregulation during discrete developmental windows can predispose to adult disease and dysregulated stress responses.

Publication Title

Epigenetic repression of cardiac progenitor gene expression by Ezh2 is required for postnatal cardiac homeostasis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP043512
Transcriptional response to stress in serum deprived mouse fibroblasts in the presence of MSK1/2 inhibitor.
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

We have employed gene expression profiling in order to identify targets of transcriptional response to stress in resting mouse Swiss 3T3 fibroblasts, either untreated (control) or treated with anisomycin for 3 or 6 hours to induce the p38/MAP kinase pathway. In order determine transcriptional effects dependent on MSK1/2 kinase activity, H89 inhibitor was used in the study. Overall design: Serum starved (72 h 0.2% FCS) mouse 3T3 cells were treated with anisomycin (188.5 nM) for 3 h or 6h (in duplicates) either with or without 15-min pre-treatment with MSK1/2 inhibitor H89 (10 uM). Untreated, serum-starved cells were used as a control. RNA was collected and gene expression profiling using strand-specific RNA-seq was performed.

Publication Title

H3S28 phosphorylation is a hallmark of the transcriptional response to cellular stress.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP039957
Transcriptional response to stress in serum deprived mouse fibroblasts [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We have employed gene expression profiling in order to identify targets of transcriptional response to stress in resting mouse Swiss 3T3 fibroblasts, either untreated (control) or treated with anisomycin to induce the p38/MAP kinase pathway. Overall design: Serum starved (72 h 0.2% FCS) mouse 3T3 cells were treated with anisomycin (188.5 nM) for 1 h (in duplicates). Untreated, serum-starved cells were used as a control. RNA was collected and gene expression profiling using strand-specific RNA-seq was performed.

Publication Title

H3S28 phosphorylation is a hallmark of the transcriptional response to cellular stress.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE5583
Expression data from wild type versus HDAC knock out mouse embryonic stem cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Histone deacetylase 1 (HDAC1) is an enzyme that promotes deacetylation of acetylated lysine residues in histones and other proteins. Histone acetylation is often associated with gene activation and expression. Los of HDAC1 leads to severe problems in development and proliferation. Moreover, it seems to be the major histone deacetylase in mouse embryonic stem cells.

Publication Title

Negative and positive regulation of gene expression by mouse histone deacetylase 1.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact