refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 104 results
Sort by

Filters

Technology

Platform

accession-icon GSE46031
Foxo1 knockout vAbl transformed cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Foxo1 is required for proper developmental progression due to distinct functions at different stages of B cell development, but specific gene targets in pro-B cells are not identified. We performed a microarray analysis in v-Abl transformed pro-B cells to compare the gene expression pattern between wildtype and Foxo1 knockout cells.

Publication Title

MK5 activates Rag transcription via Foxo1 in developing B cells.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE30219
"Off-context" gene expression in lung cancer identifies a group of metastatic-prone tumors
  • organism-icon Homo sapiens
  • sample-icon 299 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

An unexplored consequence of epigenetic alterations associated with cancer is the ectopic expression of tissue-restricted genes. Here, a new strategy was developed to decipher genome-wide expression data in search for these off-context gene activations, which consisted first, in identifying a large number of tissue-specific genes normally epigenetically silenced in most somatic cells and second, in using them as cancer biomarkers on an on/off basis. Applying this concept to analyze whole-genome transcriptome data in lung cancer, we discovered a specific group of 26 genes whose expression was a strong and independent predictor of poor prognosis in our cohort of 293 lung tumours, as well as in two independent external populations. In addition, these 26 classifying genes enabled us to isolate a homogenous group of metastatic-prone highly aggressive tumours, whose characteristic gene expression profile revealed a high proliferative potential combined to a significant decrease in immune and signaling functions. This work illustrates a new approach for a personalized management of cancer, with applications to any cancer type.

Publication Title

Ectopic activation of germline and placental genes identifies aggressive metastasis-prone lung cancers.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE41664
Comparison of Gene Expression in Psoriatic Skin from Different Sources
  • organism-icon Homo sapiens
  • sample-icon 150 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Cross-study homogeneity of psoriasis gene expression in skin across a large expression range.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
accession-icon GSE41663
Re-analysis by microarray using cDNA target of samples from psoriasis patients enrolled in an etanercept trial
  • organism-icon Homo sapiens
  • sample-icon 79 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

cDNA and cRNA hybridization technologies have different, probe-specific sensitivities. We used samples from an etanercept trial (GSE11903) to explore in a real-life setting the uniqueness of each platform.

Publication Title

Cross-study homogeneity of psoriasis gene expression in skin across a large expression range.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE41662
Gene expression profiling in psoriatic lesional and non-lesional skin [Set 2]
  • organism-icon Homo sapiens
  • sample-icon 44 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To explore the psoriasis phenotype and pathways involved in psoriasis, we characterized gene expression in lesional and non-lesional skin from psoriasis patients.

Publication Title

Cross-study homogeneity of psoriasis gene expression in skin across a large expression range.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34248
Gene expression profiling in psoriatic lesional and non-lesional skin [Set 1]
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To explore the psoriasis phenotype, we characterize gene expression in lesional and non-lesional skin from psoriasis patients.

Publication Title

Cross-study homogeneity of psoriasis gene expression in skin across a large expression range.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE47092
Effects of bacterium Burkholderia phytofirmans PsJN in Arabidopsis
  • organism-icon Arabidopsis thaliana
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Plant growth promoting rhizobacteria (PGPR) induce positive effects in plants, such as increased growth or reduced stress susceptibility. The mechanisms behind PGPR/plant interaction are poorly understood, as most studies have described short- term responses on plants and only a few studies have analyzed plant molecular responses under PGPR colonization.

Publication Title

Effects of the plant growth-promoting bacterium Burkholderia phytofirmans PsJN throughout the life cycle of Arabidopsis thaliana.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon SRP089680
Assessing the impact of loss of ATF7IP and SETDB1 on the transcriptome
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

By comparing HeLa cells lacking ATF7IP or SETDB1 generated through CRISPR/Cas9-mediated gene disruption to wild-type HeLa cells, the goal of the experiment was to determine the effect of loss of the SETDB1•ATF7IP complex on the transcriptome. Overall design: Total RNA-seq of three independent knockout HeLa clones lacking either ATF7IP or SETDB1

Publication Title

ATF7IP-Mediated Stabilization of the Histone Methyltransferase SETDB1 Is Essential for Heterochromatin Formation by the HUSH Complex.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE36094
Comparison of the gene expression profiles of a recombinant protein producing Hek 293 cell line and its non-producing parental cell line.
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Comparison of the gene expression profiles of a recombinant protein producing Hek 293 cell line (referred to as producer) and its non-producing parental cell line Hek293F (referred to as non-producer). The parental cell line was obtained from Invitrogen, Carlsbad, CA. The producer was transfected with a heavy chain variable region fused to the Fc region of a human IgG (dAb-Fc). The aim of this study was to gain a better understanding of the process of recombinant protein production in Hek293 cells and to identify targets for the engineering of an improved host cell line.

Publication Title

A multi-omics analysis of recombinant protein production in Hek293 cells.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon SRP029451
Zea mays Transcriptome or Gene expression
  • organism-icon Zea mays
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000, Illumina Genome Analyzer IIx

Description

Maize LEAFBLADELESS1 (LBL1) and Arabidopsis SUPPRESSOR OF GENE SILENCING3 (SGS3) play orthologous roles in the biogenesis of 21 nucleotide trans-acting short-interfering RNAs (tasiRNAs). The phenotypes conditioned by mutation of lbl1 and SGS3 are, however, strikingly different, suggesting that the activities of these small RNA biogenesis components, or the tasiRNAs and their targets might not be entirely conserved. To investigate the basis for this phenotypic variation, we compared the small RNA content between wild-type and lbl1 seedling apices. We show that LBL1 affects all major classes of small RNAs, and reveal unexpected crosstalk between tasiRNA biogenesis and other small RNA pathways regulating miRNAs, retrotransposons, and DNA transposons. We further identified genomic regions generating phased siRNAs, including numerous loci generating 22-nt phased small RNAs from long hairpin RNAs or overlapping antisense transcripts not previously described in other plant species. By combining both analyses, we identified nine TAS loci, all belonging to the conserved TAS3 family. Contrary to other plant species, no TAS loci targeted by a single miRNA were identified. Information from target prediction, RNAseq, and PARE analyses identified the tasiARFs as the major functional tasiRNAs in the maize vegetative apex where they regulate expression of ARF3 homologs. As such, divergence in TAS pathways is unlikely to account for the distinct phenotypes of tasiRNA biogenesis mutants in Arabidopsis and maize. Instead, the data suggests variation in the spatiotemporal regulation of ARF3, or divergence in its function, as a plausible basis for the dramatic phenotypic differences observed upon mutation of SGS3/lbl1 in Arabidopsis and maize. Overall design: An analysis of tasiRNA biogenesis, activity, and contribution to developmental phenotypes in the maize leaf. Data generated includes small RNA sequencing data and mRNA sequencing data. All data was generated in both wild type and lbl1 mutant maize leaf apices. Three replicates were generated for each genotype for the small RNA data. Two of these replicates were also used for the RNA-seq data.

Publication Title

Genome-wide analysis of leafbladeless1-regulated and phased small RNAs underscores the importance of the TAS3 ta-siRNA pathway to maize development.

Sample Metadata Fields

Age, Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact