refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1502 results
Sort by

Filters

Technology

Platform

accession-icon GSE59426
Expression data from Arabidopsis wild type and ibr1 ibr3 ibr10 triple mutant seedlings root tip segments treated with indole-3-butyric acid (IBA)
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The root cap-specific conversion of the auxin precursor indole-3-butyric acid (IBA) into the main auxin indole-3-acetic acid (IAA) generates a local auxin source which subsequently modulates both the periodicity and intensity of auxin response oscillations in the root tip of Arabidopsis, and consequently fine-tunes the spatiotemporal patterning of lateral roots. To explore downstream components of this signaling process, we investigated the early transcriptional regulations happening in the root tip during IBA-to-IAA conversion in Col-0 and ibr1 ibr3 ibr10 triple mutant after 6 hours of IBA treatment.

Publication Title

Root Cap-Derived Auxin Pre-patterns the Longitudinal Axis of the Arabidopsis Root.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE3350
SLR/IAA14-dependent auxin induced lateral root initiation
  • organism-icon Arabidopsis thaliana
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Lateral root initiation was used as a model system to study the mechanisms behind auxin-induced cell division. Genome-wide transcriptional changes were monitored during the early steps of lateral root initiation. Inclusion of the dominant auxin signaling mutant solitary root1 (slr1) identified genes involved in lateral root initiation that act downstream of the AUX/IAA signaling pathway. Interestingly, key components of the cell cycle machinery were strongly defective in slr1, suggesting a direct link between AUX/IAA signaling and core cell cycle regulation. However, induction of the cell cycle in the mutant background by overexpression of the D-type cyclin (CYCD3;1) was able to trigger complete rounds of cell division in the pericycle that did not result in lateral root formation. Therefore, lateral root initiation can only take place when cell cycle activation is accompanied by cell fate respecification of pericycle cells. The microarray data also yielded evidence for the existence of both negative and positive feedback mechanisms that regulate auxin homeostasis and signal transduction in the pericycle, thereby fine-tuning the process of lateral root initiation.

Publication Title

Cell cycle progression in the pericycle is not sufficient for SOLITARY ROOT/IAA14-mediated lateral root initiation in Arabidopsis thaliana.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE35580
Cell type-specific auxin responses in the Arabidopsis thaliana root
  • organism-icon Arabidopsis thaliana
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

We performed an analysis of transcriptomic responses to auxin within four distinct tissues of the Arabidopsis thaliana root. This high-resolution dataset shows how different cell types are predisposed to react to auxin with discrete transcriptional responses. The sensitivity provided by the analysis lies in the ability to detect cell-type specific responses diluted in organ-level analyses. This dataset provides a novel resource to examine how auxin, a widespread signal in plant development, influences differentiation and patterning in the plant through tissue-specific transcriptional regulation.

Publication Title

A map of cell type-specific auxin responses.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon E-MEXP-2912
Transcription profiling by array of different organism parts of Arabidopsis mutant for arf7 and arf19
  • organism-icon Arabidopsis thaliana
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Arabidopsis seedlings, of both wild-type and an ARF7/ARF19 double knockout mutant, were grown to 7 days post-germination. The roots were then dissected into 5 developmental zones, the meristem, early elongation zone, late elongation zone, mature root and lateral root zone. The sections then underwent transcriptional profiling to identify processes and regulatory events specific and in common to the zones.

Publication Title

A novel aux/IAA28 signaling cascade activates GATA23-dependent specification of lateral root founder cell identity.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP187984
Whole blood human transcriptome and virome analysis of ME/CFS patients experiencing post-exertional malaise following cardiopulmonary exercise testing
  • organism-icon Homo sapiens
  • sample-icon 94 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS) is a syndrome of unknown etiology characterized by profound fatigue exacerbated by physical activity, also known as post-exertional malaise (PEM). Previously, we did not detect evidence of immune dysregulation or virus reactivation outside of PEM periods. Here we sought to determine whether cardiopulmonary exercise stress testing of ME/CFS patients could trigger such changes. ME/CFS patients (n=14) and matched sedentary controls (n=11) were subjected to cardiopulmonary exercise on 2 consecutive days and followed up to 7 days post-exercise, and longitudinal whole blood samples analyzed by RNA-seq. Although ME/CFS patients showed significant worsening of symptoms following exercise versus controls, with 8 of 14 ME/CFS patients showing oxygen consumption (V?O2) on day 2, transcriptome analysis yielded only 6 differentially expressed gene (DEG) candidates when comparing ME/CFS patients to controls across all time points. None of the DEGs were related to immune signaling, and no DEGs were found in ME/CFS patients before and after exercise. Virome composition (P=0.746 by chi-square test) and number of viral reads (P = 0.098 by paired t-test) were not significantly associated with PEM. These observations do not support transcriptionally-mediated immune cell dysregulation or viral reactivation in ME/CFS patients during symptomatic PEM episodes. Overall design: RNAseq of whole blood samples from ME/CFS patients and controls following exercise.

Publication Title

Whole blood human transcriptome and virome analysis of ME/CFS patients experiencing post-exertional malaise following cardiopulmonary exercise testing.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Treatment, Subject

View Samples
accession-icon GSE11631
PU.1 a pleiotropic regulator expressed in the first embryonic stages with a crucial function in germinal progenitors
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

In the adult mammalian testis, spermatogenic differentiation starts from a minute population of spermatogonial stem cells (SSCs). SSCs are generated after birth from the fetal gonocytes, themselves derived from the primordial germ cells (PGCs), which are specified during the first days after implantation. Transcriptome profiling of purified preparations evidenced the preferential accumulation in SSCs of transcripts of PU.1 (Sfpi1), a regulatory gene previously identified in hematopoietic progenitors. In situ immunolabeling and RNA determination showed a complex pattern of expression in the adult testis, first in SSCs and early spermatogonia followed by de novo expression in pachytene spermatocytes.

Publication Title

PU.1 (Sfpi1), a pleiotropic regulator expressed from the first embryonic stages with a crucial function in germinal progenitors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE135790
Stellate cells, hepatocytes and endothelial cells imprint the Kupffer cell identity on monocytes colonizing the liver macrophage niche
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Stellate Cells, Hepatocytes, and Endothelial Cells Imprint the Kupffer Cell Identity on Monocytes Colonizing the Liver Macrophage Niche.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE135788
Stellate cells, hepatocytes and endothelial cells imprint the Kupffer cell identity on monocytes colonizing the liver macrophage niche (microarray)
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Macrophages are strongly adapted to their tissue of residence. Yet, we know little about the cell-cell interactions that imprint the tissue-specific identities of macrophages in their respective niches. Using conditional depletion of liver Kupffer cells, we traced the developmental stages of monocytes differentiating into Kupffer cells and mapped the cellular interactions imprinting the Kupffer cell identity. Kupffer cell loss induced the tumor necrosis factor (TNF) and interleukin-1 (IL-1) receptor-dependent activation of stellate cells and endothelial cells, resulting in the transient production of chemokines and adhesion molecules orchestrating monocyte engraftment. Engrafted circulating monocytes transmigrated into the perisinusoidal space, and acquired the liver-associated transcription factors ID3 and LXRα. Coordinated interactions with hepatocytes induced ID3 expression, while endothelial cells and stellate cells induced LXRα via a synergistic NOTCH-BMP pathway. This study shows that the Kupffer cell niche is composed of stellate cells, hepatocytes and endothelial cells that together imprint the liver-specific macrophage identity.

Publication Title

Stellate Cells, Hepatocytes, and Endothelial Cells Imprint the Kupffer Cell Identity on Monocytes Colonizing the Liver Macrophage Niche.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE117081
The Transcription factor Zeb2 ia required to maintain tissue-specific identities of macrophages
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The Transcription Factor ZEB2 Is Required to Maintain the Tissue-Specific Identities of Macrophages.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE117080
The Transcription factor Zeb2 ia required to maintain tissue-specific identities of macrophages [microarray]
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Microarray, Bulk RNA Sequencing and Single cell RNA Sequencing of different murine tissue-resident macrophage populations to assess role of Zeb2 and LXRa

Publication Title

The Transcription Factor ZEB2 Is Required to Maintain the Tissue-Specific Identities of Macrophages.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact