refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Showing
of 955 results
Sort by

Filters

Technology

Platform

accession-icon GSE48998
Expression data of TAGLN-overexpressing RKO human colon cancer cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Transgelin was the top-ranked marker of metastatic potential identified in the comparison of node-positive colorectal cancer (CRC) versus node-negative CRC in our previous study. Transgelin is localized in the nucleus of cultured CRC cells and microRNA-mediated knockdown of TAGLN (the gene encoding transgelin) expression modulates the expression of genes involved in the epithelial-to-mesenchymal transition.

Publication Title

Transgelin increases metastatic potential of colorectal cancer cells in vivo and alters expression of genes involved in cell motility.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP183146
Genome-wide transcriptional analysis of human iPSC-derived healthy control vs. schizophrenia cortical interneurons.
  • organism-icon Homo sapiens
  • sample-icon 54 Downloadable Samples
  • Technology Badge IconNextSeq 550

Description

We report specific changes in schizophrenia developmental interneurons by genome-wide transcriptome analysis. Overall design: RNA sequencing analysis (bulk) of healthy control interneurons vs. schizophrenia interneurons. Fourteen independent iPSC lines per group with two independent differentiations

Publication Title

iPSC-derived homogeneous populations of developing schizophrenia cortical interneurons have compromised mitochondrial function.

Sample Metadata Fields

Specimen part, Disease, Subject

View Samples
accession-icon GSE47517
Effects of Thyroxine Exposure on Osteogenesis in Mouse Calvarial Pre-Osteoblasts
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Thyroid hormone has a positive effect on endochondral bone growth. Few studies have looked at the interaction between thyroid hormone exposures and intramembranous bone derived cells. We used microarray as one tool to determine the gene expression profile of intramembranous (calvarial) derived murine pre-osteoblsts after thyroxine exposure.

Publication Title

Effects of thyroxine exposure on osteogenesis in mouse calvarial pre-osteoblasts.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP056571
Frequent and Transient Acquisition of Pluripotency During Somatic Cell Trans-Differentiation with iPSCs Reprogramming Factors (RNA-Seq)
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500

Description

Recent reports have proposed a new paradigm for obtaining mature somatic cell types from fibroblasts without going through a pluripotent state, by briefly expressing canonical iPSC reprogramming factors Oct4, Sox2, Klf4 and c-Myc (abbreviated as OSKM), in cells expanded in lineage differentiation promoting conditions. Here we apply genetic lineage tracing for endogenous Nanog, Oct4 and X chromosome reactivation during OSKM induced trans-differentiation, as these molecular events mark final stages for acquisition of induced pluripotency. Remarkably, the vast majority of reprogrammed cardiomyocytes or neural stem cells derived from mouse fibroblasts via OSKM mediated trans-differentiation were attained after transient acquisition of pluripotency, and followed by rapid differentiation. Our findings underscore a molecular and functional coupling between inducing pluripotency and obtaining “trans-differentiated” somatic cells via OSKM induction, and have implications on defining molecular trajectories assumed during different cell reprogramming methods. Overall design: poly RNA-Seq was measured before, during and after conversion of mouse embryonic fibroblasts to neural stem cells using OSKM trans-differentiation method.

Publication Title

Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE63561
Prenatal alcohol exposure alters steady-state and activated gene expression in the adult rat brain
  • organism-icon Rattus norvegicus
  • sample-icon 192 Downloadable Samples
  • Technology Badge IconIllumina ratRef-12 v1.0 expression beadchip

Description

Background: Prenatal alcohol exposure (PAE) is associated with alterations in numerous physiological systems, including the stress and immune systems. We have previously shown that PAE increases the course and severity of arthritis in an adjuvant-induced arthritis (AA) model. While the molecular mechanisms underlying these effects are not fully known, changes in neural gene expression are emerging as important factors in the etiology of PAE effects. As the prefrontal cortex (PFC) and hippocampus (HPC) play key roles in neuroimmune function, PAE-induced alterations to their transcriptome may underlie abnormal steady-state functions and responses to immune challenge. The current study examined brains from adult PAE and control females from our recent AA study to determine whether PAE causes long-term alterations in gene expression and whether these mediate the altered severity and course of arthritis in PAE females Methods: Adult females from PAE, pair-fed [PF], and ad libitum-fed control [C]) groups were injected with either saline or complete Freunds adjuvant. Animals were terminated at the peak of inflammation or during resolution (days 16 and 39 post-injection, respectively); cohorts of saline-injected PAE, PF and C females were terminated in parallel. Gene expression was analyzed in the PFC and HPC using whole genome mRNA expression microarrays. Results: Significant changes in gene expression in both the PFC and HPC were found in PAE compared to controls in response to ethanol exposure alone (saline-injected females), including genes involved in neurodevelopment, apoptosis, and energy metabolism. Moreover, in response to inflammation (adjuvant-injected females), PAE animals showed unique expression patterns, while failing to exhibit the activation of genes and regulators involved in the immune response observed in control and pair-fed animals. Conclusions: These results support the hypothesis that PAE affects neuroimmune function at the level of gene expression, demonstrating long-term effects of PAE on the CNS response under steady-state conditions and following an inflammatory insult. Key words: prenatal alcohol exposure (PAE), ethanol, inflammation, arthritis, gene expression, rat.

Publication Title

Prenatal alcohol exposure alters steady-state and activated gene expression in the adult rat brain.

Sample Metadata Fields

Sex, Specimen part, Disease

View Samples
accession-icon GSE9691
Analysis of the effects of loss of E-cadherin and cell adhesion on human mammary epithelial cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix HT Human Genome U133A Array (hthgu133a)

Description

Loss of the epithelial adhesion molecule E-cadherin is thought to enable metastasis by disrupting intercellular contacts - an early step in metastatic dissemination. To further investigate the molecular basis of this notion, we use two methods to inhibit E-cadherin function that distinguish between E-cadherin's cell-cell adhesion and intracellular signaling functions. While the disruption of cell-cell contacts alone does not enable metastasis, the loss of E-cadherin protein does, through induction of an epithelial-to-mesenchymal transition, invasiveness and anoikis-resistance. We find the E-cadherin binding partner beta-catenin to be necessary but not sufficient for induction of these phenotypes. In addition, gene expression analysis shows that E-cadherin loss results in the induction of multiple transcription factors, at least one of which, Twist, is necessary for E-cadherin loss-induced metastasis. These findings indicate that E-cadherin loss in tumors contributes to metastatic dissemination by inducing wide-ranging transcriptional and functional changes.

Publication Title

Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE37822
The H3K27 demethylase Utx facilitates somatic and germ cell epigenetic reprogramming to pluripotency
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE35775
The H3K27 demethylase Utx facilitates somatic and germ cell epigenetic reprogramming to pluripotency [Affymetrix gene expression]
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Pluripotency can be induced in somatic cells by ectopic expression of defined transcription factors, however the identity of epigenetic regulators driving the progression of cellular reprogramming requires further investigation. Here we uncover a non-redundant role for the JmjC-domain-containing protein histone H3 methylated Lys 27 (H3K27) demethylase Utx, as a critical regulator for the induction, but not for the maintenance, of primed and nave pluripotency in mice and in humans. Utx depletion results in aberrant H3K27me3 repressive chromatin demethylation dynamics, which subsequently hampers the reactivation of pluripotency promoting genes during reprogramming. Remarkably, Utx deficient primordial germ cells (PGCs) display a cell autonomous aberrant epigenetic reprogramming in vivo during their embryonic maturation, resulting in the lack of functional contribution to the germ-line lineage.

Publication Title

The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP169618
Transcriptomic analysis of different human cardiac cell types produced in vitro from human pluripotent stem cells or derived from patients.
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The epicardium, an epithelium covering the heart, is essential for cardiac development. During embryogenesis, the epicardium provides instructive signals for the growth and maturation of cardiomyocytes and for coronary angiogenesis. We generated an in vitro model of human embryonic epicardium derived from human pluripotent stem cells (hPSC-epi). These cells were able to differentiate into cardiac fibroblasts (cf) and smooth muscle cells (smc) in vitro (hPSC-epi-cf and hPSC-epi-smc respectively). Furthermore, we showed that they improved maturation of hPSC-derived cardiomyocytes (hPSC-cardio) in vitro while neural crest cells derived from hPSC (hPSC-NC) could not. Furthermore, they improved survival of hPSC-cardio and stimulated angiogenesis when injected in a rat model of myocardium infarction. We performed mRNA sequencing of the hPSC-epi, hPSC-epi-cf, hPSC-smc and hPSC-NC in order to identify the secreted molecules specifically produced by the hPSC-epi and/or its derivatives in comparison with the hPSC-NC. Vascular smooth muscle cells have different embryonic origins and different properties depending on their location in the body. The coronary smooth muscle cells come from the epicardium while the aortic ones come from the mesoderm or the neural crest. We performed mRNA sequencing of human coronary artery smc and human aortic smc to identify a specific signature of the coronary smc. We also compared the genes expressed in the hPSC-epi-smc and the smc derived from hPSC-derived lateral plate mesoderm. Overall design: For hPSC-derived samples the three replicates are coming from three different in vitro differentiations from H9. For the human primary cells, the triplicates are technical replicates (three different wells from the same culture at the same passage)

Publication Title

Epicardial cells derived from human embryonic stem cells augment cardiomyocyte-driven heart regeneration.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE17215
Expression data from paclitaxel and salinomycin-treated HMLER breast cancer cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix HT Human Genome U133A Array (hthgu133a)

Description

Screens for agents that specifically kill epithelial cancer stem cells (CSCs) have not been possible due to the rarity of these cells within tumor cell populations and their relative instability in culture. We describe here an approach to screening for agents with epithelial CSC-specific toxicity. We implemented this method in a chemical screen and discovered compounds showing selective toxicity for breast CSCs. One compound, salinomycin, reduces the proportion of CSCs by >100-fold relative to paclitaxel, a commonly used breast cancer chemotherapeutic drug. Treatment of mice with salinomycin inhibits mammary tumor growth in vivo and induces increased epithelial differentiation of tumor cells. In addition, global gene expression analyses show that salinomycin treatment results in the loss of expression of breast CSC genes previously identified by analyses of breast tissues isolated directly from patients. This study demonstrates the ability to identify agents with specific toxicity for epithelial CSCs

Publication Title

Identification of selective inhibitors of cancer stem cells by high-throughput screening.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact