refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 56 results
Sort by

Filters

Technology

Platform

accession-icon GSE19926
Effects of acLDL loading on macrophage
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

acLDL loading of mouse peritoneal macrophage is an in vitro foam cell model.

Publication Title

Cholesterol accumulation regulates expression of macrophage proteins implicated in proteolysis and complement activation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE63580
Extensive temporal transcriptome and microRNA analyses identify molecular mechanisms underlying mitochondrial dysfunction induced by multi-walled carbon nanotubes in human lung cells
  • organism-icon Homo sapiens
  • sample-icon 77 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Extensive temporal transcriptome and microRNA analyses identify molecular mechanisms underlying mitochondrial dysfunction induced by multi-walled carbon nanotubes in human lung cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE63552
Extensive temporal transcriptome and microRNA analyses identify molecular mechanisms underlying mitochondrial dysfunction induced by multi-walled carbon nanotubes in human lung cells (Affymetrix)
  • organism-icon Homo sapiens
  • sample-icon 77 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

Understanding toxicity pathways of engineered nanomaterials (ENM) has recently been brought forward as a key step in 21st century ENM risk assessment. Molecular mechanisms linked to phenotypic end points is a step towards the development of toxicity tests based on key events, which may allow for grouping of ENM according to their mechanisms of action. This study identified molecular mechanisms underlying mitochondrial dysfunction in human bronchial epithelial BEAS 2B cells following exposure to one of the most studied multi-walled carbon nanotubes (MWCNTs; Mitsui-7). Asbestos was used as a positive control and a non-carcinogenic glass wool material was included as a negative fibre control. Decreased mitochondrial membrane potential (MMP) was observed for MWCNTs at a biologically relevant dose (0.25 g/cm2) and for asbestos at 2 g/cm2, but not for glass wool. Extensive temporal transcriptomic and microRNA expression analyses identified a 330-gene signature related to MWCNT- and asbestos-induced MMP. Fourty-nine of the MMP-associated genes showed highly similar expression patterns over time (six time points) and the majority was found to be regulated by two transcription factors strongly involved in mitochondrial homeostasis, APP and NRF1. In addition, four miRNAs were associated with MMP and one of them, miR-1275, was found to negatively correlate with a large part of the MMP-associated genes. Cellular processes such as gluconeogenesis, glucose metabolism, mitochondrial LC-fatty acid -oxidation and spindle microtubule function were enriched among the MMP-associated genes and miRNAs. These results are expected to be useful in the identification of key events in ENM-related toxicity pathways for the development of molecular screening techniques.

Publication Title

Extensive temporal transcriptome and microRNA analyses identify molecular mechanisms underlying mitochondrial dysfunction induced by multi-walled carbon nanotubes in human lung cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE48284
Gene expression of SKOV3 cells after no treatment or treatment with 50 microM peracetylated GlcNAc or peracetylated 4-deoxy-GlcNAc for three days
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Heparan sulfate (HS), a long linear polysaccharide, is implicated in various steps of tumorigenesis, including angiogenesis. We successfully interfered with HS biosynthesis using a peracetylated 4-deoxy analog of the HS constituent GlcNAc and studied the compounds metabolic fate and its effect on angiogenesis. The 4-deoxy analog was activated intracellularly into UDP-4-deoxy-GlcNAc and HS expression was inhibited up to ~96% (IC50 = 16 M). HS chain size was reduced, without detectable incorporation of the 4-deoxy analog, likely due to reduced levels of UDP-GlcNAc and/or inhibition of glycosyltransferase activity. Comprehensive gene expression analysis revealed reduced expression of genes regulated by HS binding growth factors as FGF-2 and VEGF. Cellular binding and signaling of these angiogenic factors was inhibited. Micro-injection in zebrafish embryos strongly reduced HS biosynthesis, and angiogenesis was inhibited in both zebrafish and chicken model systems. All these data identify 4-deoxy-GlcNAc as a potent inhibitor of HS synthesis which hampers pro-angiogenic signaling and neo-vessel formation.

Publication Title

Interfering with UDP-GlcNAc metabolism and heparan sulfate expression using a sugar analogue reduces angiogenesis.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE3842
LD/DD time course of y w; tim01, cn bw, and y w Drosophila
  • organism-icon Drosophila melanogaster
  • sample-icon 70 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome Array (drosgenome1)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Control of daily transcript oscillations in Drosophila by light and the circadian clock.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6542
Circadian time course
  • organism-icon Drosophila melanogaster
  • sample-icon 46 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome Array (drosgenome1)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Integration of light and temperature in the regulation of circadian gene expression in Drosophila.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6491
second CA/AA time course of y w
  • organism-icon Drosophila melanogaster
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome Array (drosgenome1)

Description

Circadian clocks are temporally aligned to the environment via signals, or Zeitgebers, such as daily light and temperature cycles, food availability, and social behavior. In this study, we show that genome-wide expression profiles from temperature-entrained flies show a dramatic difference in the presence or absence of a thermocycle. Whereas transcription appears to be modified globally by changes in temperature, there is a specific set of transcripts that continue to oscillate in constant conditions following temperature entrainment. These transcripts show a significant overlap with a previously defined set of transcripts oscillating in response to a photocycle. Further, these overlapping transcripts maintain the same mutual phase relationships after entrainment by temperature or light. Comparison of the collective temperature- and light-entrained circadian phases indicates that natural environmental light and temperature cycles cooperatively entrain the circadian clock. These findings suggest that a single transcriptional clock in the adult fly head is able to integrate information from both light and temperature.

Publication Title

Integration of light and temperature in the regulation of circadian gene expression in Drosophila.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6490
CA/AA time course of y w
  • organism-icon Drosophila melanogaster
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome Array (drosgenome1)

Description

Circadian clocks are temporally aligned to the environment via signals, or Zeitgebers, such as daily light and temperature cycles, food availability, and social behavior. In this study, we show that genome-wide expression profiles from temperature-entrained flies show a dramatic difference in the presence or absence of a thermocycle. Whereas transcription appears to be modified globally by changes in temperature, there is a specific set of transcripts that continue to oscillate in constant conditions following temperature entrainment. These transcripts show a significant overlap with a previously defined set of transcripts oscillating in response to a photocycle. Further, these overlapping transcripts maintain the same mutual phase relationships after entrainment by temperature or light. Comparison of the collective temperature- and light-entrained circadian phases indicates that natural environmental light and temperature cycles cooperatively entrain the circadian clock. These findings suggest that a single transcriptional clock in the adult fly head is able to integrate information from both light and temperature.

Publication Title

Integration of light and temperature in the regulation of circadian gene expression in Drosophila.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6493
CA/AA time course of y w; tim01
  • organism-icon Drosophila melanogaster
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome Array (drosgenome1)

Description

Circadian clocks are temporally aligned to the environment via signals, or Zeitgebers, such as daily light and temperature cycles, food availability, and social behavior. In this study, we show that genome-wide expression profiles from temperature-entrained flies show a dramatic difference in the presence or absence of a thermocycle. Whereas transcription appears to be modified globally by changes in temperature, there is a specific set of transcripts that continue to oscillate in constant conditions following temperature entrainment. These transcripts show a significant overlap with a previously defined set of transcripts oscillating in response to a photocycle. Further, these overlapping transcripts maintain the same mutual phase relationships after entrainment by temperature or light. Comparison of the collective temperature- and light-entrained circadian phases indicates that natural environmental light and temperature cycles cooperatively entrain the circadian clock. These findings suggest that a single transcriptional clock in the adult fly head is able to integrate information from both light and temperature.

Publication Title

Integration of light and temperature in the regulation of circadian gene expression in Drosophila.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6492
AA1/AA2 time course of cn bw
  • organism-icon Drosophila melanogaster
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome Array (drosgenome1)

Description

Circadian clocks are temporally aligned to the environment via signals, or Zeitgebers, such as daily light and temperature cycles, food availability, and social behavior. In this study, we show that genome-wide expression profiles from temperature-entrained flies show a dramatic difference in the presence or absence of a thermocycle. Whereas transcription appears to be modified globally by changes in temperature, there is a specific set of transcripts that continue to oscillate in constant conditions following temperature entrainment. These transcripts show a significant overlap with a previously defined set of transcripts oscillating in response to a photocycle. Further, these overlapping transcripts maintain the same mutual phase relationships after entrainment by temperature or light. Comparison of the collective temperature- and light-entrained circadian phases indicates that natural environmental light and temperature cycles cooperatively entrain the circadian clock. These findings suggest that a single transcriptional clock in the adult fly head is able to integrate information from both light and temperature.

Publication Title

Integration of light and temperature in the regulation of circadian gene expression in Drosophila.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact