refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Build and Download Custom Datasets
refine.bio helps you build ready-to-use datasets with normalized transcriptome data from all of the world’s genetic databases.
Showing
of 28 results
Sort by

Filters

Technology

Platform

accession-icon GSE47936
Location of indigenous human HSCs reveals functional properties of HSCs that are dictated by anatomic and cellular architecture of bone marrow
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Regional localization within the bone marrow influences the functional capacity of human HSCs.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE47934
Location of indigenous human HSCs reveals functional properties of HSCs that are dictated by anatomic and cellular architecture of bone marrow I
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Demonstration of hematopoietic stem cells (HSCs) was first shown in the mouse and was dependent on recipient bone marrow (BM) to support in vivo multilineage hematopoietic reconstitution, thereby illustrating non-cell-autonomous requirements for HSC functions. Murine studies have defined microanatomic compartments in the BM comprised of osteoblasts, mesenchymal cells, subsets of vasculature, and innervating neural cells functioning as an HSC-supportive niche. Despite the potential clinical applications, analyses of putative HSCs in the BM of humans has not been examined. Here, using human bone biopsies, we provide evidence of HSC propensity to endosteal regions of Trabecular Bone Area (TBA). Independent of phenotypic definitions based on prospective isolation, functional studies indicate that human HSCs residing in the TBA of human and transplanted recipients had superior regenerative and self-renewal capacity and are molecularly distinct to those repopulating the Long Bone Area (LBA). Consistent with the non-cell-autonomous nature of HSC function, osteoblasts in the TBA possess unique characteristics and expressed a key network of factors including those involving Notch activity which could regulate TBA vs. LBA location of human HSCs in vivo. Our study illustrates that human-mouse xenografts provide a surrogate to indigenous human HSC in the BM, and demonstrates that BM architecture plays a critical role in defining functional properties of human HSCs.

Publication Title

Regional localization within the bone marrow influences the functional capacity of human HSCs.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE47935
Location of indigenous human HSCs reveals functional properties of HSCs that are dictated by anatomic and cellular architecture of bone marrow II
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Demonstration of hematopoietic stem cells (HSCs) was first shown in the mouse and was dependent on recipient bone marrow (BM) to support in vivo multilineage hematopoietic reconstitution, thereby illustrating non-cell-autonomous requirements for HSC functions. Murine studies have defined microanatomic compartments in the BM comprised of osteoblasts, mesenchymal cells, subsets of vasculature, and innervating neural cells functioning as an HSC-supportive niche. Despite the potential clinical applications, analyses of putative HSCs in the BM of humans has not been examined. Here, using human bone biopsies, we provide evidence of HSC propensity to endosteal regions of Trabecular Bone Area (TBA). Independent of phenotypic definitions based on prospective isolation, functional studies indicate that human HSCs residing in the TBA of human and transplanted recipients had superior regenerative and self-renewal capacity and are molecularly distinct to those repopulating the Long Bone Area (LBA). Consistent with the non-cell-autonomous nature of HSC function, osteoblasts in the TBA possess unique characteristics and expressed a key network of factors including those involving Notch activity which could regulate TBA vs. LBA location of human HSCs in vivo. Our study illustrates that human-mouse xenografts provide a surrogate to indigenous human HSC in the BM, and demonstrates that BM architecture plays a critical role in defining functional properties of human HSCs.

Publication Title

Regional localization within the bone marrow influences the functional capacity of human HSCs.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE75086
Cellular and Molecular Targeting of Recurrence in Acute Myeloid Leukemia
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

While disease recurrence remains the outstanding clinical challenge in acute myeloid leukemia (AML), the basis of relapse remains poorly characterized and thereby preventing effective therapeutic targeting. We performed gene expression analysis of human AML patient samples in addition to in vitro and in vivo assays of leukemic cell survival and self-renewal using xenograft modeling. These molecular and functional analyses afforded the identification of unique target genes that support recurrence. Preclinical modeling using these novel targets provided proof-of-principle for combination therapies towards more effective and durable suppression of AML regrowth.

Publication Title

Identification of Chemotherapy-Induced Leukemic-Regenerating Cells Reveals a Transient Vulnerability of Human AML Recurrence.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34965
Sam68-mediated disruption of CBP/-catenin neoplastic transcriptional programming allows selective targeting of human cancer stem cells
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Increasing evidence suggests that cancer arises from cells that are capable of initiating and sustaining neoplastic tissue growth, termed cancer stem cells (CSCs). Of central scientific and clinical relevance, cells with CSC properties are enriched for chemo- and radiation resistance and therefore may represent a population of cells that must be therapeutically targeted to prevent cancer recurrence/relapse 1. Human CSCs were first isolated in neoplastic hematopoietic tissue that manifests leukemias such as adult acute myeloid leukemia (AML) 2. AML stem cells represent a benchmark model of human CSC biology, ultimately motivating foundational studies leading to the identification of CSCs from solid tumours such as breast and colon 3. Independent of tissue type, a consistent feature of CSCs is their uncontrolled self-renewal capacity and differentiation blockade that have been commonly related to aberrant activation of pro-oncogenic events such as dysregulation of CBP/p300 transcriptional regulation involving -catenin 4. However, the transcriptional networks involving CBP/p300/-catenin complex have been shown to be equally critical to maintain normal stem cell (SCs) self-renewal for tissue homeostasis and regeneration 5. Here, we identify Sam68 as a distinct target that affords the ability to uniquely regulate CBP mediated transcription in human CSCs. Using a small molecule that targets Sam68, we reveal that shifting its affinity for CBP disrupts CBP/-catenin complexes, leading to immediate changes in histone H3 (K14 and K18) acetylation. Chemical targeting of Sam68 induced global changes in transcriptional programs of patient AML cells involving apoptosis and differentiation and was able to uniquely reduce neoplastic self-renewal of human CSCs in an in vivo model of patient specific acute myeloid leukemia (AML). Our study establishes an approach whereby the CBP/-catenin transcriptome can be uniquely targeted via Sam68 based vulnerability of CSCs that impacts neoplastic differentiation and self-renewal.

Publication Title

Sam68 Allows Selective Targeting of Human Cancer Stem Cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE92778
Niche targeting enhances endogenous healthy hematopoiesis in acute myeloid leukemia
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Global gene expression comparison between mesenchymal stem cells (MSCs) purified from the BM of AML patients versus healthy donors.

Publication Title

Acute myeloid leukaemia disrupts endogenous myelo-erythropoiesis by compromising the adipocyte bone marrow niche.

Sample Metadata Fields

Specimen part, Disease stage

View Samples
accession-icon SRP131375
Identification of transcriptome and metabolome signatures of fatty liver disease in HepaRG cells exposed to PCB 126 and glyphosate
  • organism-icon Homo sapiens
  • sample-icon 160 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

We provide here the alterations in gene expression profiles of HepaRG cells, a validated model for cellular steatosis, exposed to three concentration of the polychlorinated biphenyl (PCB) 126, one of the most potent chemical inducing NAFLD. Additionnally, three concentration of the pesticide active ingredient glyphosate were tested. This ultimately suggested sensitive biomarkers of exposure. A gene ontology analysis showed hallmarks of an activation of the AhR receptor by dioxin-like compounds. Our study provides grounds for the development of molecular signatures of fatty liver diseases to rapidly assess toxic effects of chemicals in the HepaRG cell line. Overall design: Differentiated HepaRGTM cells (HPR 116) were purchased from Biopredic International. The cells were kept in the general purpose medium until day 8, when the culture becomes well organized and includes well-delineated trabeculae and many canaliculi-like structures. Three concentrations of the PCB were then tested from day 8 to day 14, in order to cover a wide range of biological effects, starting from low environmental exposures (100 pM) to high concentrations of (1 uM), with an intermediate concentration (10 nM). Three concentrations of glyphosate, or one concentration of the Roundup herbicide (Grand Travaux +) were also tested in the same system.

Publication Title

Comparison of transcriptome responses to glyphosate, isoxaflutole, quizalofop-p-ethyl and mesotrione in the HepaRG cell line.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon SRP148096
Comparison of transcriptome responses to isoxaflutole, quizalofop-p-ethyl and mesotrione in the HepaRG cell line
  • organism-icon Homo sapiens
  • sample-icon 44 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

We provide here the alterations in gene expression profiles of HepaRG cells, a validated model for cellular steatosis, exposed to three concentration of quizalofop-p-ethyl, isoxaflutole and mesotrione Overall design: Differentiated HepaRGTM cells (HPR 116) were purchased from Biopredic International. The cells were kept in the general purpose medium until day 8, when the culture becomes well organized and includes well-delineated trabeculae and many canaliculi-like structures. Three concentrations of the different pesticide active ingredients (quizalofop-p-ethyl, isoxaflutole and mesotrione ) were then tested from day 8 to day 14. In order to ensure coverage of a wide range of potential biological effects, three concentrations of each active principle were tested; a concentration representative of low environmental exposure (0.1 uM), an intermediate concentration (10 uM) and a high concentration (1000 uM).

Publication Title

Comparison of transcriptome responses to glyphosate, isoxaflutole, quizalofop-p-ethyl and mesotrione in the HepaRG cell line.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP166017
Quizalofop-p-ethyl induces adipogenesis in 3T3-L1 cells
  • organism-icon Mus musculus
  • sample-icon 120 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

We provide here the alterations in gene expression profiles of 3T3-L1 cells, a validated model for adipogenesis, exposed to quizalofop-p-ethyl for 6h, 24h and 12 days. Overall design: Exposure to endocrine disrupting chemicals is a risk factor for obesity. The most commonly used pesticide active ingredients have never been tested in an adipogenesis assay. We tested for the first time the lipid accumulation induced by glyphosate, 2,4-dichlorophenoxyacetic acid, dicamba, mesotrione, isoxaflutole and quizalofop-p-ethyl (QpE) in 3T3-L1 adipocytes. Only QpE caused triglyceride accumulation from a concentration of 1 µM. We thus conducted an in-depth investigation of molecular mechanisms responsible for the adipogenic effects of quizalopfop-p-ethyl by an RNA-seq analysis.

Publication Title

Quizalofop-p-Ethyl Induces Adipogenesis in 3T3-L1 Adipocytes.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE66429
New molecular insights into modulation of platelet reactivity in aspirin-treated patients using a network-based approach
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

New molecular insights into modulation of platelet reactivity in aspirin-treated patients using a network-based approach.

Sample Metadata Fields

Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact