refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 23 results
Sort by

Filters

Technology

Platform

accession-icon GSE44967
IQGAP1 Scaffold-Kinase Interaction Blockade Selectively Targets Ras-MAP Kinase Driven Tumors
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

MAPK scaffolds, such as IQGAP1, assemble pathway kinases together to effect signal transmission and disrupting scaffold function therefore offers a potentially orthogonal approach to MAPK cascade inhibition. Consistent with this possibility, we observed an IQGAP1 requirement in Ras-driven tumorigenesis in mouse and human tissue. Delivery of the IQGAP1 WW peptide sequence that mediates Erk1/4 binding, moreover, disrupted IQGAP1-Erk1/2 interactions, abolished Ras/Raf-driven tumorigenesis, bypassed acquired resistance to the B-Raf inhibitor vemurafinib (PLX- 4032), and acts as a systemically deliverable therapeutic to significantly increase lifespan of tumor bearing mice. Scaffold-kinase interaction blockade (SKIB) acts by a mechanism distinct from direct kinase inhibition and represents a strategy to target over-active oncogenic kinase cascades in cancer.

Publication Title

IQGAP1 scaffold-kinase interaction blockade selectively targets RAS-MAP kinase-driven tumors.

Sample Metadata Fields

Time

View Samples
accession-icon GSE50686
Role of MITF in melanoma
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Enhancer-targeted genome editing selectively blocks innate resistance to oncokinase inhibition.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE50649
COLO829 treatment with PLX4032 and/or MITF knockdown
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Thousands of enhancers are characterized in the human genome, yet few have been shown important in cancer. Inhibiting oncokinases, such as EGFR, ALK, HER2, and BRAF, is a mainstay of current cancer therapy but is hindered by innate drug resistance mediated by upregulation of the HGF receptor, MET. The mechanisms mediating such genomic responses to targeted therapy are unknown. Here, we identify lineage-specific MET enhancers for multiple common tumor types, including a melanoma lineage-specific MET enhancer that displays inducible chromatin looping and MET gene induction upon BRAF inhibition. Epigenomic analysis demonstrated that the melanocyte-specific transcription factor, MITF, mediates this enhancer function. Targeted genomic deletion (<7bp) of the MITF motif within the MET enhancer suppressed inducible chromatin looping and innate drug resistance, while maintaining MITF-dependent, inhibitor-induced melanoma cell differentiation. Epigenomic analysis can thus guide functional disruption of regulatory DNA to decouple pro- and anti-oncogenic functions of tumor lineage-enriched transcription factors mediating innate resistance to oncokinase therapy.

Publication Title

Enhancer-targeted genome editing selectively blocks innate resistance to oncokinase inhibition.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE58161
Suppression of progenitor differentiation requires the long noncoding RNA ANCR
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Suppression of progenitor differentiation requires the long noncoding RNA ANCR.

Sample Metadata Fields

Specimen part, Disease, Treatment

View Samples
accession-icon GSE34767
Suppression of Progenitor Differentiation Requires the Long Non-Coding RNA ANCR
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Suppression of progenitor differentiation requires the long noncoding RNA ANCR.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34528
Suppression of Progenitor Differentiation Requires the Long Non-Coding RNA ANCR [HG-U133_Plus_2]
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Long non-coding RNAs (lncRNAs) regulate diverse processes, yet a potential role for lncRNAs in maintaining the undifferentiated state in somatic tissue progenitor cells remains uncharacterized. We used transcriptome sequencing and tiling arrays to compare lncRNA expression in epidermal progenitor populations versus differentiating cells. We identified ANCR (anti differentiation ncRNA) as an 855 bp lncRNA down-regulated during differentiation. Depleting ANCR in progenitor-containing populations, without any other stimuli, led to rapid differentiation gene induction. In epidermis, ANCR loss abolished the normal exclusion of differentiation from the progenitor-containing compartment. The ANCR lncRNA is thus required to enforce the undifferentiated cell state within epidermis.

Publication Title

Suppression of progenitor differentiation requires the long noncoding RNA ANCR.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE40123
Control of Somatic Tissue Differentiation by the Long Non-Coding RNA TINCR
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Control of somatic tissue differentiation by the long non-coding RNA TINCR.

Sample Metadata Fields

Specimen part, Disease, Treatment

View Samples
accession-icon GSE40122
Control of Somatic Tissue Differentiation by the Long Non-Coding RNA TINCR (array)
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Several of the thousands of human long non-coding RNAs (lncRNAs) have been functionally characterized; however, potential roles for lncRNAs in somatic tissue differentiation remain poorly understood. Here we show that a 3.7kb lncRNA, terminal differentiation-induced ncRNA (TINCR), controls human epidermal differentiation by a post-transcriptional mechanism. TINCR is required for high mRNA abundance of key differentiation genes, many of which are mutated in human skin diseases, including FLG, LOR, ALOXE3, ALOX12B, ABCA12, CASP14 and ELOVL3. TINCR-deficient epidermis lacked terminal differentiation ultrastructure, including keratohyalin granules and intact lamellar bodies. Genome-scale RNA interactome analysis revealed that TINCR interacts with a suite of differentiation mRNAs. TINCR-mRNA interaction occurs through a 25 nucleotide TINCR box motif which is strongly enriched in interacting mRNAs \and required for TINCR binding. A high-throughput screen to analyze TINCR binding capacity to ~9,400 human recombinant proteins revealed direct binding of TINCR RNA to the Staufen1 (STAU1) protein. STAU1-deficient tissue recapitulated the impaired differentiation seen with TINCR depletion. Loss of UPF1 and UPF2, both of which are required for STAU1-mediated RNA decay (SMD), however, lacked differentiation impacts. Instead, the TINCR/STAU1 complex seems to mediate stabilization of differentiation mRNAs, such as KRT80. These data identify TINCR as a key lncRNA required for somatic tissue differentiation, which occurs through inducible lncRNA binding to differentiation mRNAs to ensure their expression.

Publication Title

Control of somatic tissue differentiation by the long non-coding RNA TINCR.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP104148
Next Generation Sequencing Facilitates Differential Expression Analysis of miRNA Expression In the Whole Blood Samples Obtained From Prostate Cancer Patients vs. Controls
  • organism-icon Homo sapiens
  • sample-icon 37 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Research conducted using the novel approach of Next Generation Sequencing to determine the differentially expressed microRNAs in whole blood samples from prostate cancer patients. Overall design: The whole blood miRNA samples from both controls and patients were sequences and a differential expressional analysis was conducted to identify possible biomarkers to distinguish patients from controls.

Publication Title

A Panel of MicroRNAs as Diagnostic Biomarkers for the Identification of Prostate Cancer.

Sample Metadata Fields

Specimen part, Disease stage, Subject

View Samples
accession-icon GSE53358
Gene expression analysis of Wnt+ and Wnt- effector CD8 T cells
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Wnt signal transduction during an immune response is involved in the establishment of functional CD8 T cell memory

Publication Title

Differences in the transduction of canonical Wnt signals demarcate effector and memory CD8 T cells with distinct recall proliferation capacity.

Sample Metadata Fields

Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact