refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Showing
of 788 results
Sort by

Filters

Technology

Platform

accession-icon GSE52624
Leishmania major modulates autophagy in host macrophages during intracellular differentiation
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Autophagy generally participates in innate immunity by elimination of intracellular pathogens. However, many of them developed successful strategies to counteract their autolysosomal digestion and lastly to exploit this catabolic cellular process.

Publication Title

Autophagic digestion of Leishmania major by host macrophages is associated with differential expression of BNIP3, CTSE, and the miRNAs miR-101c, miR-129, and miR-210.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE85500
Expression data from nucleus accumbens of rats infused with lentivirus LV-GFP and LV-miR-495 overexpression constructs
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 2.0 ST Array (ragene20st)

Description

The goal of the study was to determine the effect of lentiviral- mediated overexpression of miR-495 (LV-miR-495) on the levels of gene expression in the nuclues accumbens of rats relative to control rats injected with the empty vector (LV-GFP).

Publication Title

In silico identification and in vivo validation of miR-495 as a novel regulator of motivation for cocaine that targets multiple addiction-related networks in the nucleus accumbens.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP099071
Biosynthesis of histone messenger RNA employs a specific 3' end endonuclease
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

During S-phase of the cell cycle production of the core histone proteins is precisely balanced with DNA replication. Metazoan mRNAs encoding replication dependent (RD) histones lack polyA tail normally formed by 3' end cleavage and coupled polyadenylation of the pre-mRNA. Instead, they undergoes to endonucleolytic cleavage on the 3' side of an RNA hairpin (stem loop) producing mRNA with a 3´-stem loop (SL), which is exported from the nucleus for use in translation. The same endonuclease that is involved in normal protein-coding pre-mRNA cleavage, i.e. cleavage and poyladenylation specificity factor 73 (CPSF73), is proposed to catalyse RD pre-histone mRNA cleavage. Additional factors specific to RD pre-histone mRNA processing, including stem loop binding protein (SLBP) and the U7 small nuclear ribonucleoprotein (U7snRNP) that binds to a histone downstream element (HDE) are thought to be involved in CPSF73 targeting to RD pre-histone mRNA. We report that a different histone specific endonuclease (HSE), which like CPSF73 is a metallo ß lactamase (MBL) fold protein, is specific for RD pre-histone mRNA cleavage10,11. Crystallographic and biochemical studies reveal HSE has a di-zinc ion containing active site related to that of CPSF73, but which has distinct overall fold. Notably HSE depletion from cells leads to the production of unprocessed RD pre-histone mRNA due to inefficient 3' end processing. The consequent depletion of core histone proteins correlates with a cell cycle defect due to a delay in entering/progressing through S-phase. HSE thus may represent a new type of S-phase specific cancer target. Overall design: Examination of chromatin mRNA profiles in HeLa cells after depletion of HSE or CPSF73 by siRNA treatment.

Publication Title

Biosynthesis of histone messenger RNA employs a specific 3' end endonuclease.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE54852
Inferring causal metabolic signals that regulate the dynamic TORC1-dependent transcriptome
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 41 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Inferring causal metabolic signals that regulate the dynamic TORC1-dependent transcriptome.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE54850
Dynamic mRNA gene expression during a nutritional downshift from glutamine to proline
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Dynamic mRNA gene expression from the wildtype YSBN6 during a nutritional downshift from glutamine to proline. Glutamine and proline were initially together in the media, with cells consuming exlusively glutamine (proline utilization inhibited due to nitrogen catabolite repression). The concentration of glutamine was frequently evaluated at-line, and the moment at which glutamine was not detected anymore is referred to as the time of the shift.

Publication Title

Inferring causal metabolic signals that regulate the dynamic TORC1-dependent transcriptome.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE54851
Dynamic mRNA gene expression following a rapamycin treatment
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Dynamic mRNA gene expression from the wildtype YSBN6 during a rapamycin treatment (rapamycin-induced downshift). Rapamycin was added to yeast cells growing exponentially on glutamine as sole nitrogen source.

Publication Title

Inferring causal metabolic signals that regulate the dynamic TORC1-dependent transcriptome.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE54844
Dynamic mRNA gene expression during a nutritional upshift from proline to glutamine
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Dynamic mRNA gene expression from the wildtype YSBN6 during a nutritional upshift from proline to glutamine. Glutamine was added to yeast cells growing exponentially on proline as the sole nitrogen source.

Publication Title

Inferring causal metabolic signals that regulate the dynamic TORC1-dependent transcriptome.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE13996
Molecular profiling of classical Hodgkins lymphoma tissues
  • organism-icon Homo sapiens
  • sample-icon 73 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Previous reports suggest that outcome of cHL patients may be related to the tumor microenvironment, which in turn may be influenced by EBV infection. Gene profiling was used for further characterize the cHL microenvironment. A training set of 73 cHL tissue samples was profiled using Affymetrix DNA microarrays. Supervised analysis provided a gene signature separating EBV+ from EBV- cHL tissues, including genes characteristic of Th1 and antiviral response. Samples from patients with favourable outcome significantly overexpressed genes involved in the function of B-cells and plasmacytoid dendritic cells (pDCs), like BCL11A. A validation set of 146 cHL samples was analyzed using immunohistochemistry (IHC).

Publication Title

Molecular profiling of classical Hodgkin lymphoma tissues uncovers variations in the tumor microenvironment and correlations with EBV infection and outcome.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE27975
HL-1 cardiomyocyte response to hypoxia
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Expression profiling of cultured HL-1 cardiomyocytes subjected to hypoxia for 8 hours.

Publication Title

The VLDL receptor promotes lipotoxicity and increases mortality in mice following an acute myocardial infarction.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE24234
Experimental systems biology: Lessons from an integrated, multi-laboratory study in yeast
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

We undertook an inter-laboratory effort to generate high-quality quantitative data for a very large number of cellular components in yeast using transcriptome and metabolome analysis. We ensured the high-quality of the experimental data by evaluating a wide range of sampling and measurement techniques. The data were generated for two different yeast strains, each growing under two different growth conditions and based on integrated analysis of the high-throughput data we hypothesize that differences in growth rates and yields on glucose between the two strains are due to differences in protein metabolism.

Publication Title

Integrated multilaboratory systems biology reveals differences in protein metabolism between two reference yeast strains.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact