refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1710 results
Sort by

Filters

Technology

Platform

accession-icon SRP068739
Plasticity between Epithelial and Mesenchymal States Unlinks EMT from Metastasis-Enhancing Stem Cell Capacity
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge IconNextSeq 500, Illumina HiSeq 2500

Description

In this study we studied the presence of tumor cells that underwent epithelial-to-mesenchymal transition within polyoma middle T antigen (PyMT) breast tumors. For this we dissociated tumors and isolated Ecad positive tumor cells by FACS sorting. We confirmed that PyMT tumors contain a small set of tumor cells that have undergone EMT in the primary tumor and that E-cadherin can be used as a marker on single cell level for mesenchymal status in this model. Overall design: (i) We isolated primary tumors from mice, dissociated the tumors and FACS-sorted for single Ecad positive tumor cells, after this we performed single cell sequencing of the cells. (ii) We isolated CTCs and solid tumor cells from mice, dissociated the tumors and FACS-sorted for single Ecad positive and negative cells, after this we performed single cell sequencing of the cells.

Publication Title

Plasticity between Epithelial and Mesenchymal States Unlinks EMT from Metastasis-Enhancing Stem Cell Capacity.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE85487
Effects of IFN-a and IFN-b on ex vivo ATL patient pbmcs
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The data contained in this record are used to differentiate between the effects of IFN-a and IFN-b on 48h cultures of the ex vivo pbmcs of ATL patients, using Affymetrix microarrays (HuGene 1.0).

Publication Title

IFN-β induces greater antiproliferative and proapoptotic effects and increased p53 signaling compared with IFN-α in PBMCs of Adult T-cell Leukemia/Lymphoma patients.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE7788
Nodular lymphocyte predominant Hodgkin's lymphoma vs T cell/histiocyte rich B cell lymphoma
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

T-cell/histiocyte rich B cell lymphoma (THRBL) and nodular lymphocyte predominant Hodgkin's lymphoma (NLPHL) share some morphological characteristics, including a prominent stromal reaction, but display a markedly different prognosis. To investigate the difference between the stromal reactions of these lymphomas at the molecular level, we performed microarray expression profiling on a series of THRBL and NLPHL cases.

Publication Title

T-cell/histiocyte-rich large B-cell lymphoma shows transcriptional features suggestive of a tolerogenic host immune response.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP103021
Circadian networks in human embryonic stem cell-derived cardiomyocytes
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Cell-autonomous circadian oscillations strongly influence tissue physiology and pathophysiology of peripheral organs. Recent in vivo findings in the heart demonstrate that the circadian clock controls oscillatory gene expression programs in the adult myocardium. However, whether in vitro human embryonic stem (ES) cell-derived cardiomyocytes can establish circadian rhythmicity is unknown. Here we report that while undifferentiated human ES cells do not possess a functional clock, oscillatory expression of known core clock genes emerges during directed cardiac differentiation, with robust rhythms in day 30 cardiomyocytes. Our data reveal a stress related oscillatory network of genes that underlies a time-dependent response to doxorubicin, a frequently used anti-cancer drug with cardiotoxic side effects. These results provide a set of oscillatory genes that is relevant to functional cardiac studies and that can be deployed to uncover the potential contribution of the clock to other processes such as cardiac regeneration. Overall design: Human embryonic stem cells (ES cells) were differentiated via a directed differentiation protocol in vitro towards cardiomyocytes for a period of 30 days. Cardiomyocytes were synchronized with dexamethasone and triplicate samples for RNA extraction and sequencing were taken every 4 hours for 48 hours in total. RNA was then extracted using TRIzol, barcoded and amplified following the CEL-Seq protocol.

Publication Title

Circadian networks in human embryonic stem cell-derived cardiomyocytes.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP202046
Single-cell transcriptomics of the embryonic mouse pancreas
  • organism-icon Mus musculus
  • sample-icon 58 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Data accompaning to van Gurp et al. Development 2019. single-cell sequencing of the developing mouse pancreas followed by Seurat analysis to discover genes important for alpha and beta cell differentiation. Overall design: Single-cells from mouse embryonic pancreas at E12.5, E13.5, E14.5, E15.5 and E18.5 were isolated and enriched for MIP-GFP and sorted into 384-well plates. Afterwards, SORT-seq was performed and single-cell transcriptomics profiles were obtained.

Publication Title

A transcriptomic roadmap to α- and β-cell differentiation in the embryonic pancreas.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE112681
Whole blood transcriptome analysis in amyotrophic lateral sclerosis: a biomarker study
  • organism-icon Homo sapiens
  • sample-icon 1117 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Whole blood transcriptome analysis in amyotrophic lateral sclerosis: A biomarker study.

Sample Metadata Fields

Sex, Disease

View Samples
accession-icon GSE112676
Whole blood transcriptome analysis in amyotrophic lateral sclerosis: a biomarker study [HT12_V3]
  • organism-icon Homo sapiens
  • sample-icon 741 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

Transcriptome-wide analysis of whole blood gene expression profiles of ALS patients, gender- and age-matched controls and patients diagnosed with diseases mimicking ALS at a tertiary referral center for motor neuron diseases.

Publication Title

Whole blood transcriptome analysis in amyotrophic lateral sclerosis: A biomarker study.

Sample Metadata Fields

Sex, Disease

View Samples
accession-icon GSE112680
Whole blood transcriptome analysis in amyotrophic lateral sclerosis: a biomarker study [HT12_V4]
  • organism-icon Homo sapiens
  • sample-icon 376 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

Transcriptome-wide analysis of whole blood gene expression profiles of ALS patients, gender- and age-matched controls and patients diagnosed with diseases mimicking ALS at a tertiary referral center for motor neuron diseases.

Publication Title

Whole blood transcriptome analysis in amyotrophic lateral sclerosis: A biomarker study.

Sample Metadata Fields

Sex, Disease

View Samples
accession-icon SRP080991
A single-cell transcriptome atlas of the human pancreas [CEL-seq2]
  • organism-icon Homo sapiens
  • sample-icon 32 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

To understand organ function it is important to have an inventory of the cell types present in the tissue and of the corresponding markers that identify them. This is a particularly challenging task for human tissues like the pancreas, since reliable markers are limited. Transcriptome-wide studies are typically done on pooled islets of Langerhans, which obscures contributions from rare cell types and/or potential subpopulations. To overcome this challenge, we developed an automated single-cell sequencing platform to sequence the transcriptome of thousands of single pancreatic cells from deceased organ donors, allowing in silico purification of all main pancreatic cell types. We identify cell type-specific transcription factors, a subpopulation of REG3A-positive acinar cells, and cell surface markers that allow sorting of live alpha and beta cells with high purity. This resource will be useful for developing a deeper understanding of pancreatic biology and pathophysiology of diabetes mellitus. Overall design: Islets of Langerhans were extracted from human cadaveric pancreata and kept in culture until single-cell dispersion and FACS sorting. Single-cell transcriptomics was performed on live cells from this mixture using an automated version of CEL-seq2 on live, FACS sorted cells. The StemID algorithm was used to identify clusters of cells corresponding to the major pancreatic cell types and to mine for novel cell type-specific genes as well as subpopulations within the known pancreatic cell types.

Publication Title

A Single-Cell Transcriptome Atlas of the Human Pancreas.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE35590
Transcriptome kinetics of circulating neutrophils during human experimental endotoxemia
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Polymorphonuclear cells (neutrophils) play an important role in the systemic inflammatory response syndrome and the development of sepsis. These cells are essential for the defense against microorganisms, but may also cause tissue damage. Therefore, neutrophil numbers and activity are considered to be tightly regulated. Previous studies have investigated gene transcription during experimental endotoxemia in whole blood and peripheral blood mononuclear cells. However, the gene transcription response of the circulating pool of neutrophils to systemic inflammatory stimulation in vivo is currently unclear. We examined neutrophil gene transcription kinetics in healthy human subjects (n=4) administered a single dose of endotoxin (LPS, 2 ng/kg iv). In addition, freshly isolated neutrophils were stimulated ex vivo with LPS, TNF, G-CSF and GM-CSF to identify stimulus-specific gene transcription responses. Whole transcriptome microarray analysis of circulating neutrophils at 2, 4 and 6 hours after LPS infusion revealed activation of inflammatory networks which are involved in signaling of TNF and IL-1 and IL-1. The transcriptome profile of inflammatory activated neutrophils in vivo reflects extended survival and regulation of inflammatory responses. We show that these changes in neutrophil transcriptome are most likely due to a combination of early activation of circulating neutrophils by TNF and G-CSF and a mobilization of young neutrophils from the bone marrow.

Publication Title

Transcriptome kinetics of circulating neutrophils during human experimental endotoxemia.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact