refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1869 results
Sort by

Filters

Technology

Platform

accession-icon GSE71939
Expression data of SHSY5Y cells after cocaine exposure
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The aim of the study was to evaluate cocaine-induced changes in gene expression in a dopaminergic model.

Publication Title

Transcriptomic and genetic studies identify NFAT5 as a candidate gene for cocaine dependence.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE18497
Diagnosis-relapse in ALL
  • organism-icon Homo sapiens
  • sample-icon 81 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Almost a quarter of pediatric patients with Acute Lymphoblastic Leukemia (ALL) suffer from relapses. The biological mechanisms underlying therapy response and development of relapses have remained unclear. In an attempt to better understand this phenomenon, we have analyzed 41 matched diagnosis relapse pairs of ALL patients using genomewide expression arrays (82 arrays) on purified leukemic cells. In roughly half of the patients very few differences between diagnosis and relapse samples were found (stable group), suggesting that mostly extra-leukemic factors (e.g., drug distribution, drug metabolism, compliance) contributed to the relapse. Therefore, we focused our further analysis on 20 samples with clear differences in gene expression (skewed group), reasoning that these would allow us to better study the biological mechanisms underlying relapsed ALL. After finding the differences between diagnosis and relapse pairs in this group, we identified four major gene clusters corresponding to several pathways associated with changes in cell cycle, DNA replication, recombination and repair, as well as B cell developmental genes. We also identified cancer genes commonly associated with colon carcinomas and ubiquitination to be upregulated in relapsed ALL. Thus, about half of relapses are due to selection or emergence of a clone with deregulated expression of a genes involved in pathways that regulate B cell signaling, development, cell cycle, cellular division and replication.

Publication Title

Genome-wide expression analysis of paired diagnosis-relapse samples in ALL indicates involvement of pathways related to DNA replication, cell cycle and DNA repair, independent of immune phenotype.

Sample Metadata Fields

Sex, Specimen part, Disease

View Samples
accession-icon SRP195539
Transcriptome and proteome profiling of neural stem cells from the human subventricular zone in Parkinson's disease
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000, NextSeq 500

Description

It is currently accepted that the human brain has a limited neurogenic capacity and an impaired regenerative potential. We have previously shown the existence of CD271-expressing neural stem cells (NSCs) in the subventricular zone (SVZ) of Parkinson's disease (PD) patients, which proliferate and differentiate towards neurons and glial cells in vitro. To study the molecular profile of these NSCs in detail, we performed RNA sequencing and mass spectrometry on CD271+ NSCs isolated from human post-mortem SVZ and on homogenates of the SVZ. CD271+ cells were isolated through magnetic cell separation (MACS). We first compared the molecular profile of CD271+ NSCs to the SVZ homogenate from control donors to assess the CD271+ NSCs gene signature and finally made a comparison between controls and PD patients to establish a specific molecular profile of NSCs and the SVZ in PD. While our transcriptome analysis did not identify any differentially expressed genes in the SVZ between control and PD patients, our proteome analysis revealed several proteins that were differentially expressed in PD. Some of these proteins are involved in cytoskeletal organization and mitochondrial function. Transcriptome and proteome analyses of NSCs from PD revealed changes in the expression of genes and proteins involved in metabolism, transcriptional activity and cytoskeletal organization. Our results not only confirm pathological hallmarks of PD (e.g. impaired mitochondrial function), but also suggest that NSCs may transit into a primed-quiescent state, that is in an “alert” non-proliferative phase in PD. Overall design: From post-mortem human SVZ of control and Parkinson disease donors we isolated CD271+ NSCs and Cd11b+ microglia by MACS and the whole SVZ to generate RNA sequencing libraries using Celseq2 method. We aimed for low coverage sequencing (~2 million mapped to the coding regions) per sample to investigate the gross changes in the transcriptome. Libraries (rpi small primer) were sequenced in 3 runs, 2 on an Illumina NextSeq500 using 75-bp paired-end sequencing at the Utrecht Seuqencing center (USEQ) and the third on a HiSeq4000 using 150-bp paired-end sequencing at Genomescan. All the samples were mapped in a single run to an average depth of ~10 million reads per sample. Reads were mapped to the latest human coding transcriptome using bwa, normalized and analyzed using the standard DESEQ2 package.

Publication Title

Transcriptome and proteome profiling of neural stem cells from the human subventricular zone in Parkinson's disease.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE48284
Gene expression of SKOV3 cells after no treatment or treatment with 50 microM peracetylated GlcNAc or peracetylated 4-deoxy-GlcNAc for three days
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Heparan sulfate (HS), a long linear polysaccharide, is implicated in various steps of tumorigenesis, including angiogenesis. We successfully interfered with HS biosynthesis using a peracetylated 4-deoxy analog of the HS constituent GlcNAc and studied the compounds metabolic fate and its effect on angiogenesis. The 4-deoxy analog was activated intracellularly into UDP-4-deoxy-GlcNAc and HS expression was inhibited up to ~96% (IC50 = 16 M). HS chain size was reduced, without detectable incorporation of the 4-deoxy analog, likely due to reduced levels of UDP-GlcNAc and/or inhibition of glycosyltransferase activity. Comprehensive gene expression analysis revealed reduced expression of genes regulated by HS binding growth factors as FGF-2 and VEGF. Cellular binding and signaling of these angiogenic factors was inhibited. Micro-injection in zebrafish embryos strongly reduced HS biosynthesis, and angiogenesis was inhibited in both zebrafish and chicken model systems. All these data identify 4-deoxy-GlcNAc as a potent inhibitor of HS synthesis which hampers pro-angiogenic signaling and neo-vessel formation.

Publication Title

Interfering with UDP-GlcNAc metabolism and heparan sulfate expression using a sugar analogue reduces angiogenesis.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon E-MEXP-337
Transcription profiling by array of human T-cell differentiation
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

To gain more insight into initiation and regulation of T cell receptor (TCR) gene rearrangement during human T cell development, we analyzed TCR gene rearrangements by quantitative PCR analysis in nine consecutive T-cell developmental stages, including CD34+ lin- cord blood cells as a reference. The same stages were used for gene expression profiling using DNA microarrays.

Publication Title

New insights on human T cell development by quantitative T cell receptor gene rearrangement studies and gene expression profiling.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE22601
T-cell development
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

T cells develop from progenitors that migrate from the bone marrow into the thymus. Thymocytes are subdivided roughly as being double negative (DN), double positive (DP), or single positive (SP), based on the expression of the CD4 and CD8 coreceptors. The DN stage is heterogeneous and can be subdivided into four distinct subsets in mice based on the expression of CD44 and CD25. In human, three distinct DN stages can be recognized: a CD34+CD38CD1a stage that represents the most immature thymic subset and the consecutive CD34+CD38+CD1a and CD34+CD38+CD1a+ stages. Human DN thymocytes mature via an immature single positive (ISP CD4+) and a DP stage into CD4+ or CD8+ SP T cells that express functional T cell receptors (TCR) and that exit the thymus. In this study, gene expression was measured in each of these nine stages.

Publication Title

New insights on human T cell development by quantitative T cell receptor gene rearrangement studies and gene expression profiling.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE98582
Exploring gene expression biomarker candidates for neurobehavioral impairment from total sleep deprivation
  • organism-icon Homo sapiens
  • sample-icon 555 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Exploring gene expression biomarker candidates for neurobehavioral impairment from total sleep deprivation.

Sample Metadata Fields

Subject, Time

View Samples
accession-icon GSE98564
Gene expression biomarkers for neurobehavioral impairment from total sleep deprivation microarray data [D6]
  • organism-icon Homo sapiens
  • sample-icon 199 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Healthy human adults were recruited to a sleep lab at Washington State University and remained there 7 consecutive days. Six received a well-rested Control condition of 10 h Time-In-Bed (TIB) nightly.

Publication Title

Exploring gene expression biomarker candidates for neurobehavioral impairment from total sleep deprivation.

Sample Metadata Fields

Subject, Time

View Samples
accession-icon GSE98565
Gene expression biomarkers for neurobehavioral impairment from total sleep deprivation microarray data [D8]
  • organism-icon Homo sapiens
  • sample-icon 193 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Healthy human adults were recruited to a sleep lab at Washington State University and remained there 7 consecutive days. Six received a well-rested Control condition of 10 h Time-In-Bed (TIB) nightly.

Publication Title

Exploring gene expression biomarker candidates for neurobehavioral impairment from total sleep deprivation.

Sample Metadata Fields

Subject, Time

View Samples
accession-icon GSE98566
Gene expression biomarkers for neurobehavioral impairment from total sleep deprivation microarray data [D9]
  • organism-icon Homo sapiens
  • sample-icon 163 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Healthy human adults were recruited to a sleep lab at Washington State University and remained there 7 consecutive days. Six received a well-rested Control condition of 10 h Time-In-Bed (TIB) nightly.

Publication Title

Exploring gene expression biomarker candidates for neurobehavioral impairment from total sleep deprivation.

Sample Metadata Fields

Subject, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact