refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Build and Download Custom Datasets
refine.bio helps you build ready-to-use datasets with normalized transcriptome data from all of the world’s genetic databases.
Showing
of 20 results
Sort by

Filters

Technology

Platform

accession-icon SRP148477
Single cell RNA sequencing of B cells from allergic individuals
  • organism-icon Homo sapiens
  • sample-icon 973 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

IgE antibodies mediate the symptoms of allergic reactions, yet these antibodies and the cells that produce them remain enigmatic due to their scarcity in humans. To address this, we have isolated single B cells of all isotypes, including rare IgE producing B cells, from the peripheral blood of food allergic individuals. Using single cell RNA sequencing (scRNA-seq) we have characterized the gene expression, splicing, and heavy and light chain antibody sequences of these cells.

Publication Title

High-affinity allergen-specific human antibodies cloned from single IgE B cell transcriptomes.

Sample Metadata Fields

Sex, Age, Specimen part, Disease

View Samples
accession-icon SRP076678
Single cell transcriptome of human myometrial and cervical tissue during pregnancy
  • organism-icon Homo sapiens
  • sample-icon 349 Downloadable Samples
  • Technology Badge IconNextSeq 500, Illumina HiSeq 3000

Description

No description.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE73731
Clear cell renal cell carcinoma (ccRCC) samples
  • organism-icon Homo sapiens
  • sample-icon 261 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To select signatures of ccRCC, 265 ccRCC samples were obtained from the Van Andel Research Institute.

Publication Title

Recognizing the Continuous Nature of Expression Heterogeneity and Clinical Outcomes in Clear Cell Renal Cell Carcinoma.

Sample Metadata Fields

Sex, Specimen part, Disease stage

View Samples
accession-icon GSE35208
Effects of silencing miR-10b in an U87-2M1 glioma line - an invasive in vivo derived subline of U87 glioma cells
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

MicroRNA-10b pleiotropically regulates invasion, angiogenicity and apoptosis of tumor cells resembling mesenchymal subtype of glioblastoma multiforme.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE99734
Generation of Stem Cell-Derived Kupffer Cells for Application in Human In Vitro Inflammatory Liver Model
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

There is an evident, unmet need to develop a commercially available in vitro system that can model inflammatory states of the liver and predict immune-mediated hepatotoxicity of drugs and xenobiotics taken under inflamed conditions. Hepatocyte-Kupffer cell co-cultures can model inflammation-mediated hepatotoxicity; however, Kupffer cell (KC) source remains an important bottleneck for the development of such models. Primary human Kupffer cells (PHKCs) are costly, limited in availability and exhibit donor variability. An alternative cell source for KCs has not been reported. Important paradigm shift from the classical dogma of adult blood-circulating monocyte-derived macrophages to intrahepatic precursor/fetal monocyte-derived macrophages has shed new light into the origin of KCs in vivo. Based on these recent findings, we report here, a novel method to generate human KCs in vitro from stem cells (hPSC-KCs) via fetal monocytes. hPSC-KCs expressed macrophage markers, CD11, CD14, CD68, CD163 and CD32 at gene and protein level and exhibited functional properties such as phagocytosis and Interleukin-6 and Tumor Necrosis Factor-4alpha production upon activation. Importantly, molecular signature, liver-macrophage specific CLEC-4F expression and cytokines production levels of hPSC-KCs were similar to PHKCs but different from non-liver macrophages. We used an inflammatory liver co-culture model to demonstrate that activated hPSC-KCs, but not non-liver macrophages, were able to recapitulate effects of PHKCs when stimulated with paradigm hepatotoxicants. hPSC-KCs developed in this study offer a renewable human cell source for liver-specific macrophages which can be used to develop in vitro systems for modelling the inflammatory state of the liver.

Publication Title

Generation of mature kupffer cells from human induced pluripotent stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE14484
Gene Expression Changes in Response to UV Inactivated Baculoviral Vector Transduction of the Rat Brain In Vivo
  • organism-icon Rattus norvegicus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Recombinant baculoviral vectors efficiently transduce several types of cells in the brain. To characterize host responses to viral challenge, thus verifying the suitability of using the virus for the development of gene therapy strategies in the central nervous system, we used cDNA microarray technology to examine in vitro and in vivo global cellular gene expression profiles after viral transduction. We demonstrated that the transduction induced host antiviral responses as a major reaction in all three types of samples profiled, including the rat brain, cultured human astrocytes and human neuronal cells. The related genes were mainly those associated with innate immunity. Several genes of the major histocompatibility complex molecules, an important component of the host adaptive immunity to exogenous pathogens, were up-regulated in the rat brain and human astrocytes, but not in neuronal cells. We also observed that genes related to cell death and apoptosis were up-regulated and genes related cell cycle regulation were down-regulated in neuronal cells, but not obviously affected in astrocytes. These findings should be useful in understating the molecular basis for neural cell response to baculoviral transduction and guiding rational applications of baculoviral vectors in the central nervous systems

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE35169
Expression data from U87 glioma cells and U87-2M1 glioma cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

An experimental lung metastasis assay was used to derive an invasive subline of U87 that is metastatic in mice.

Publication Title

MicroRNA-10b pleiotropically regulates invasion, angiogenicity and apoptosis of tumor cells resembling mesenchymal subtype of glioblastoma multiforme.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE9834
Gene Expression Changes in Response to Baculoviral Vector Transduction of Normal Human Astrocytes In Vitro
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Recombinant baculoviral vectors efficiently transduce several types of cells in the brain. To characterize host responses to viral challenge, thus verifying the suitability of using the virus for the development of gene therapy strategies in the central nervous system, we used cDNA microarray technology to examine in vitro and in vivo global cellular gene expression profiles after viral transduction. We demonstrated that the transduction induced host antiviral responses as a major reaction in all three types of samples profiled, including the rat brain, cultured human astrocytes and human neuronal cells. The related genes were mainly those associated with innate immunity. Several genes of the major histocompatibility complex molecules, an important component of the host adaptive immunity to exogenous pathogens, were up-regulated in the rat brain and human astrocytes, but not in neuronal cells. We also observed that genes related to cell death and apoptosis were up-regulated and genes related cell cycle regulation were down-regulated in neuronal cells, but not obviously affected in astrocytes. These findings should be useful in understating the molecular basis for neural cell response to baculoviral transduction and guiding rational applications of baculoviral vectors in the central nervous systems

Publication Title

Gene expression profiling to define host response to baculoviral transduction in the brain.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9835
Gene Expression Changes in Response to Baculoviral Vector Transduction of Neuronal Cells In Vitro
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Recombinant baculoviral vectors efficiently transduce several types of cells in the brain. To characterize host responses to viral challenge, thus verifying the suitability of using the virus for the development of gene therapy strategies in the central nervous system, we used cDNA microarray technology to examine in vitro and in vivo global cellular gene expression profiles after viral transduction. We demonstrated that the transduction induced host antiviral responses as a major reaction in all three types of samples profiled, including the rat brain, cultured human astrocytes and human neuronal cells. The related genes were mainly those associated with innate immunity. Several genes of the major histocompatibility complex molecules, an important component of the host adaptive immunity to exogenous pathogens, were up-regulated in the rat brain and human astrocytes, but not in neuronal cells. We also observed that genes related to cell death and apoptosis were up-regulated and genes related cell cycle regulation were down-regulated in neuronal cells, but not obviously affected in astrocytes. These findings should be useful in understating the molecular basis for neural cell response to baculoviral transduction and guiding rational applications of baculoviral vectors in the central nervous systems

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12305
A 5 Sequence of Human HMGB2 Gene for Transcriptional Targeting of Glioblastoma
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Achievement of specific tumor cell targeting remains a challenge for glioma gene therapy. We report here the identification and characterization of a 5 sequence of human HMGB2 gene for transcriptional targeting to glioblastoma. We performed microarray analysis and found HMGB2 as one of the genes that had a low level of expression in normal human astrocytes, but was significantly up-regulated in glioblastoma cells. Real-time PCR quantification revealed increase in HMBG2 expression level in glioblastoma tissues and cells between 11 to 79 fold over that in normal human brain tissue. With progressive truncation of a 5-upstream sequence of the HMGB2 gene, we identified a 500-bp fragment that displayed a high transcriptional activity in glioblastoma cells, but a low activity in normal brain cells. Using the sequence to drive the expression of the herpes simplex virus thymidine kinase gene in the context of a baculoviral vector, glioblastoma cells died in the presence of ganciclovir, whereas normal human astrocytes and neurons were not affected. We further confirmed that after intra-tumor injection, the baculoviral vector effectively suppressed the growth of human glioblastoma cells in a mouse xenograft model. Our results suggest that the 5-upstream sequence of the HMGB2 gene can be used as an efficient, tumor-selective promoter in targeted vectors for glioblastoma gene therapy.

Publication Title

High mobility group box2 promoter-controlled suicide gene expression enables targeted glioblastoma treatment.

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact