refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Showing
of 54 results
Sort by

Filters

Technology

Platform

accession-icon GSE51001
PI3K inhibition synergizes with glucocorticoids but antagonizes with methotrexate in T-cell acute lymphoblastic leukemia.
  • organism-icon Homo sapiens
  • sample-icon 83 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

PI3K inhibition synergizes with glucocorticoids but antagonizes with methotrexate in T-cell acute lymphoblastic leukemia.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line

View Samples
accession-icon GSE50999
Gene expression data of diagnostic childhood T-ALL samples
  • organism-icon Homo sapiens
  • sample-icon 43 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The PI3K pathway is frequently hyperactivated in primary T-cell acute lymphoblastic leukemia (T-ALL) cells. Activation of the PI3K pathway has been suggested as one mechanism of glucocorticoid resistance in T-ALL, and patients harboring mutations in the PI3K negative regulator PTEN may be at increased risk of induction failure and relapse. In this study, we identified Myc as an important downstream integrator of PI3K pathway activity in T-ALL and we provide data supportive of an association of higher PI3K activity with glucocorticoid resistance and worse clinical outcome. The PI3K inhibitor AS605240 showed anti-leukemic activity and strong synergism with glucocorticoids both in vitro and in a NOD/SCID xenograft model of T-ALL. In contrast, PI3K inhibition showed antagonism with methotrexate and daunorubicin, drugs that preferentially target dividing cells. This antagonistic interaction, however, could be circumvented by the use of correct drug scheduling schemes. Our data indicate the potential benefits and difficulties for the incorporation of PI3K inhibitors in T-ALL therapy.

Publication Title

PI3K inhibition synergizes with glucocorticoids but antagonizes with methotrexate in T-cell acute lymphoblastic leukemia.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE51000
Gene expression signature of primary T-ALL cells treated with the PI3K inhibitor AS605240
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The PI3K pathway is frequently hyperactivated in primary T-cell acute lymphoblastic leukemia (T-ALL) cells. Activation of the PI3K pathway has been suggested as one mechanism of glucocorticoid resistance in T-ALL, and patients harboring mutations in the PI3K negative regulator PTEN may be at increased risk of induction failure and relapse. In this study, we identified Myc as an important downstream integrator of PI3K pathway activity in T-ALL and we provide data supportive of an association of higher PI3K activity with glucocorticoid resistance and worse clinical outcome. The PI3K inhibitor AS605240 showed anti-leukemic activity and strong synergism with glucocorticoids both in vitro and in a NOD/SCID xenograft model of T-ALL. In contrast, PI3K inhibition showed antagonism with methotrexate and daunorubicin, drugs that preferentially target dividing cells. This antagonistic interaction, however, could be circumvented by the use of correct drug scheduling schemes. Our data indicate the potential benefits and difficulties for the incorporation of PI3K inhibitors in T-ALL therapy.

Publication Title

PI3K inhibition synergizes with glucocorticoids but antagonizes with methotrexate in T-cell acute lymphoblastic leukemia.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE71212
Expression data from Jurkat cells treated with SB225002 for 6h and 9h.
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix HT Human Genome U133A Array (hthgu133a)

Description

In our efforts to evaluate the function of the IL-8 receptor CXCR2 in Acute Lymphoblastic Leukemia (ALL) cells, we made use of SB225002 (N-(2-hydroxy-4-nitrophenyl)-N-(2-bromophenyl)urea), a drug initially described as a CXCR2 antagonist. Although the CXCR2 receptor was found to be non-functional in ALL, B- and T-ALL cell lines were sensitive to SB225002.

Publication Title

SB225002 Induces Cell Death and Cell Cycle Arrest in Acute Lymphoblastic Leukemia Cells through the Activation of GLIPR1.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE50998
Gene expression signature of T-ALL cell lines treated with the PI3K inhibitor AS605240
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The PI3K pathway is frequently hyperactivated in primary T-cell acute lymphoblastic leukemia (T-ALL) cells. Activation of the PI3K pathway has been suggested as one mechanism of glucocorticoid resistance in T-ALL, and patients harboring mutations in the PI3K negative regulator PTEN may be at increased risk of induction failure and relapse. In this study, we identified Myc as an important downstream integrator of PI3K pathway activity in T-ALL and we provide data supportive of an association of higher PI3K activity with glucocorticoid resistance and worse clinical outcome. The PI3K inhibitor AS605240 showed anti-leukemic activity and strong synergism with glucocorticoids both in vitro and in a NOD/SCID xenograft model of T-ALL. In contrast, PI3K inhibition showed antagonism with methotrexate and daunorubicin, drugs that preferentially target dividing cells. This antagonistic interaction, however, could be circumvented by the use of correct drug scheduling schemes. Our data indicate the potential benefits and difficulties for the incorporation of PI3K inhibitors in T-ALL therapy.

Publication Title

PI3K inhibition synergizes with glucocorticoids but antagonizes with methotrexate in T-cell acute lymphoblastic leukemia.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE66638
Gene expression data of diagnostic childhood T-ALL samples and human thymocytes
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Lymphotoxin-mediated activation of the lymphotoxin- receptor (LTR) has been implicated in several physiological and pathological processes, including lymphoid organ development, T-cell maturation, and solid and hematopoietic malignancies. Its role in T-cell acute lymphoblastic leukemia (T-ALL) or other T-cell malignancies has remained however to be investigated. Here we show that the genes encoding lymphotoxin (LT)- and LT were expressed in T-ALL patient samples, more abundantly in the TAL/LMO molecular subtype, and in the TEL-JAK2 mouse model of cortical/mature T-ALL. Surface LT12 protein was detected in primary mouse T-ALL cells, but only upon phorbol ester stimulation or absence of microenvironmental LTR interaction. Indeed, in contrast to leukemic cells collected from transplanted Ltbr/ mice or from co-cultures with Ltbr/ mouse embryonic fibroblasts (MEF), those collected from Ltbr+/+ mice or from Ltbr+/+ MEF co-cultures presented no surface LT expression. Supporting the notion that LT signaling plays a role in T-ALL, inactivation of the Ltbr gene in mice resulted in a statistically significant delay in TEL-JAK2-induced leukemia onset. Expression of the Lta and Ltb genes was found to be increased at the early asymtptomatic stages of TEL-JAK2 T-ALL, when only low proportions of malignant thymocytes are present in normal sized thymus. Interestingly, young asymptomatic TEL-JAK2;Ltbr/ mice presented significantly less leukemic thymocytes than TEL-JAK2;Ltbr+/+ mice. Together, these data indicate that early lymphotoxin expression by T-ALL cells activates LTR signaling in thymic stromal cells, thus promoting leukemogenesis.

Publication Title

Lymphotoxin-β receptor in microenvironmental cells promotes the development of T-cell acute lymphoblastic leukaemia with cortical/mature immunophenotype.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE33803
Environmental and simulation facility conditions can modulate gravity response of Drosophila transcriptome
  • organism-icon Drosophila melanogaster
  • sample-icon 140 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Suboptimal evolutionary novel environments promote singular altered gravity responses of transcriptome during Drosophila metamorphosis.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE33779
Environmental and facility conditions promote singular gravity responses of transcriptome during Drosophila metamorphosis
  • organism-icon Drosophila melanogaster
  • sample-icon 90 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Genome-wide transcriptional profiling showed that reducing gravity levels in the International Space Station (ISS) causes important alterations in Drosophila gene expression intimately linked to imposed spaceflight-related environmental constrains during Drosophila metamorphosis. However, simulation experiments on ground testing space-related environmental constraints, show differential responses. Curiously, although particular genes are not common in the different experiments, the same GO groups including a large multigene family related with behavior, stress response and organogenesis are over represented in them. A global and integrative analysis using the gene expression dynamics inspector (GEDI) self-organizing maps, reveals different degrees in the responses of the transcriptome when using different environmental conditions or microgravity/hypergravity simulation devices

Publication Title

Suboptimal evolutionary novel environments promote singular altered gravity responses of transcriptome during Drosophila metamorphosis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE33801
Environmental and simulation facility conditions can modulate a behavioral-driven altered gravity response of Drosophila imagoes transcriptome
  • organism-icon Drosophila melanogaster
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon

Description

Genome-wide transcriptional profiling shows that reducing gravity levels in the International Space Station (ISS) causes important alterations in Drosophila gene expression. However, simulation experiments on ground, without space constraints, show weaker effects than space environment. A global and integrative analysis using the gene expression dynamics inspector (GEDI) self-organizing maps, reveals a subtle response of the transcriptome using different populations and microgravity and hypergravity simulation devices. These results suggest that, in addition to behavioural responses that can be detected also at the gene expression level, the transcriptome is finely tuned to normal gravity.

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon E-MEXP-3095
Transcription profiling by array of a primary culture of immature murine B cells expressing endogenous wild type PAX5 protein
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

In the present study, we investigated PAX5TEL function in transcription processes by transduction of PAX5TEL construct in wild type preBI cells, a primary culture of immature B cells expressing endogenous wild type PAX5 protein.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Disease, Disease stage, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact