refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 9723 results
Sort by

Filters

Technology

Platform

accession-icon SRP142335
Arabidopsis thaliana Transcriptome
  • organism-icon Arabidopsis thaliana
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina HiSeq 2000

Description

for studying heat resistant genes

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP056904
RNA-Seq analysis of Arabidopsis thaliana esr1-1 mutant versus wild-type (JC66)
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1000

Description

A GSTF8 promoter fragment fused to the luciferase reporter gene was used in a forward genetic screen for Arabidopsis mutants with up-regulated GSTF8 promoter activity and identified the esr1-1 (enhanced stress response 1) mutant which also conferred increased resistance to the fungal pathogen Fusarium oxysporum. RNA-Seq was conducted to compare esr1-1 and wild-type (GSTF8 promoter::luciferase reporter line JC66 in Col-0 background) transcriptomes for altered gene expression.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE41358
Expression data from mouse preimplantation cloned embryos
  • organism-icon Mus musculus
  • sample-icon 51 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Transcriptiome analysis is an excellent approach to understand the mechanism underlying nuclear reprogramming in somatic-cell-cloned embryos. Analysis of the transcriptomic data from the oocyte to blastocyst stage revealed that specific genes were inappropriately reprogrammed at each stage. Sertoli cell-cloned embryos appear to develop normally because the progression of incorrect reprogramming is concealed throughout development.

Publication Title

The transcriptomic architecture of mouse Sertoli cell clone embryos reveals temporal–spatial-specific reprogramming.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE84417
Expression data from uterus tissue of sheep
  • organism-icon Ovis aries
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Ovine Gene 1.1 ST Array (ovigene11st)

Description

Embryo implantation is an essential step for the establishment of pregnancy and is crucial for the successful embryo transplantation of in vitro fertilization embryos. The successful implantation of an embryo depends upon cellular and molecular dialog between the uterus and the embryo.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE45668
The presence of the Y-chromosome, not the absence of the second X-chromosome, alters the mRNA levels stored in the fully grown XY mouse oocyte
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The oocytes of B6.Y(TIR) sex-reversed female mouse mature in culture but fail to develop after fertilization because of their cytoplasmic defects. To identify the defective components, we compared the gene expression profiles between the fully-grown oocytes of B6.Y(TIR) (XY) females and those of their XX littermates by cDNA microarray. 173 genes were found to be higher and 485 genes were lower in XY oocytes than in XX oocytes by at least 2-fold. We compared the transcript levels of selected genes by RT-PCR in XY and XX oocytes, as well as in XO oocytes missing paternal X-chromosomes. All genes tested showed comparable transcript levels between XX and XO oocytes, indicating that mRNA accumulation is well adjusted in XO oocytes. By contrast, in addition to Y-encoded genes, many genes showed significantly different transcript levels in XY oocytes. We speculate that the presence of the Y-chromosome, rather than the absence of the second X-chromosome, caused dramatic changes in the gene expression profile in the XY fully-grown oocyte.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE7197
Down-regulation of OsSRT1 induces DNA fragmentation and cell death in rice
  • organism-icon Oryza sativa
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rice Genome Array (rice)

Description

In order to study the physiological function of OsSRT1, a 412 bp segment of the 3-untranslated region of OsSRT1, which was not conserved with OsSRT2, was inserted in inverted repeats to build a construct for RNA interference (RNAi). The construct was used to transform an indica rice variety (Minghui63).To study whether the down-regulation of OsSRT1 affected gene expression, we compared the transcripts of the RNAi to the wild type plants by microarray analysis (Affymetrix). RNAs were isolated from young leaves of 11 day-old plants (before appearance of lesions in the RNAi plants). Affymetrix GeneChip Rice Genome Array were performed. Data was analyzed with SAM excel add-in and in-house perl scripts.Analysis of data from three biological repeats revealed that 521 genes are up-regulated, and 213 genes are down-regulated (with q value at 5%).

Publication Title

Down-regulation of a SILENT INFORMATION REGULATOR2-related histone deacetylase gene, OsSRT1, induces DNA fragmentation and cell death in rice.

Sample Metadata Fields

Age

View Samples
accession-icon GSE94945
Expression data from Saccharomyces cerevisiae upon honokiol treatment
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Honokiol (HNK), one of the main medicinal components in Magnolia officinalis, possesses antimicrobial activity against a variety of pathogenic bacteria and fungi.S. cerevisiae is a model eukaryote used for investigating the cellular and molecular mechanisms of anti-fungal drugs.

Publication Title

Transcriptomic analysis of Saccharomyces cerevisiae upon honokiol treatment.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE47745
Expression data from intestine of HDAC1 and HDAC2 conditionally mutated mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Acetylation and deacetylation of histones and other proteins depend on the opposing activities of histone acetyltransferases and histone deacetylases (HDACs), leading to either positive or negative gene expression changes. The use of HDAC inhibitors (HDACi) has uncovered a role for HDACs in the control of proliferation, apoptosis and inflammation. However, little is known of the roles of specific HDACs in intestinal epithelial cells (IEC). We investigated the consequences of ablating both Hdac1 and Hdac2 in murine IECs gene expression.

Publication Title

HDAC1 and HDAC2 restrain the intestinal inflammatory response by regulating intestinal epithelial cell differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE54785
The acetylome regulators Hdac1 and Hdac2 differently modulate intestinal epithelial cell dependent homeostatic responses in experimental colitis
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Histone deacetylases (Hdac) remove acetyl groups from proteins, influencing global and specific gene expression. Hdacs control inflammation, as shown by Hdac inhibitor-dependent protection from DSS-induced murine colitis. While tissue-specific Hdac knockouts show redundant and specific functions, little is known of their intestinal epithelial cell (IEC) role. We have shown previously that dual Hdac1/Hdac2 IEC-specific loss disrupts cell proliferation and determination, with decreased secretory cell numbers and altered barrier function. We thus investigated how compound Hdac1/Hdac2 or Hdac2 IEC-specific deficiency alters the inflammatory response. Floxed Hdac1 and Hdac2 and villin-Cre mice were interbred. Compound Hdac1/Hdac2 IEC-deficient mice showed chronic basal inflammation, with increased basal Disease Activity Index (DAI) and deregulated Reg gene colonic expression. DSS-treated dual Hdac1/Hdac2 IEC-deficient mice displayed increased DAI, histological score, intestinal permeability and inflammatory gene expression. In contrast to double knockouts, Hdac2 IEC-specific loss did not affect IEC determination and growth, nor result in chronic inflammation. However, Hdac2 disruption protected against DSS colitis, as shown by decreased DAI, intestinal permeability and caspase-3 cleavage. Hdac2 IEC-specific deficient mice displayed increased expression of IEC gene subsets, such as colonic antimicrobial Reg3b and Reg3g mRNAs, and decreased expression of immune cell function-related genes. Our data show that Hdac1 and Hdac2 are essential IEC homeostasis regulators. IEC-specific Hdac1 and Hdac2 may act as epigenetic sensors and transmitters of environmental cues and regulate IEC-mediated mucosal homeostatic and inflammatory responses. Different levels of IEC Hdac activity may lead to positive or negative outcomes on intestinal homeostasis during inflammation

Publication Title

The acetylome regulators Hdac1 and Hdac2 differently modulate intestinal epithelial cell dependent homeostatic responses in experimental colitis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE60003
Expression data from Control or ShSuz12 rat Intestinal epithelial cells IEC-6
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Polycomb-group proteins form multimeric protein complexes involved in transcriptional silencing. The Polycomb Repressive complex 2 (PRC2) contains the Suppressor of Zeste-12 protein (Suz12) and the histone methyltransferase Enhancer of Zeste protein-2 (Ezh2). This complex, catalyzing the di- and tri-methylation of histone H3 lysine 27, is essential for embryonic development and stem cell renewal. However, the role of Polycomb-group protein complexes in the control of the intestinal epithelial cell (IEC) phenotype is not known. We investigated the impact of Suz 12 depletion on gene expression in IEC-6 cells.

Publication Title

The histone H3K27 methylation mark regulates intestinal epithelial cell density-dependent proliferation and the inflammatory response.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact