refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 9378 results
Sort by

Filters

Technology

Platform

accession-icon SRP060446
Differential kinetics of host responses during infection with genetically distinct henipavirus strains in a lethal ferret model
  • organism-icon Mustela putorius furo
  • sample-icon 28 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

RNA-seq analysis of lung and brain tissues from ferrets infected with Hendra virus and Nipah-Bangladesh virus

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part, Cell line, Time

View Samples
accession-icon SRP010102
Mustela putorius furo Transcriptome during influenza infection
  • organism-icon Mustela putorius furo
  • sample-icon 19 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx, Illumina HiSeq 2000

Description

Ferrets were experimentaly infected with influenza A/California/07/2009. RNA samples from lungs and lymph nodes were analyzed by Illumina sequencing.

Publication Title

Sequencing, annotation, and characterization of the influenza ferret infectome.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP059989
Homo sapiens Raw sequence reads
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

By means of 3' end sequencing we provide a genome-wide, high-resolution polyadenylation map of the human heart. By sequencing 5 control en 5 dilated cardiomyopathy (DCM) myocardial specimens we investigate the difference in alternative polyadenylation (APA) in healthy and diseased hearts.

Publication Title

Genome-Wide Polyadenylation Maps Reveal Dynamic mRNA 3'-End Formation in the Failing Human Heart.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE63074
Expression data from non-small cell lung carcinoma (NSCLC)
  • organism-icon Homo sapiens
  • sample-icon 398 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The analytical validation of a 15 gene prognostic signature for early-stage, completely resected, non-small-cell lung carcinoma that distinguishes between patients with good and poor prognoses.

Publication Title

Analytical Performance of a 15-Gene Prognostic Assay for Early-Stage Non-Small-Cell Lung Carcinoma Using RNA-Stabilized Tissue.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE42050
Blocking TWEAK inhibits tumor growth through inhibition of tumor cell proliferation and survival and by enhancing the host antitumor immune response
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 219 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302), Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

RG7212 anti-TWEAK mAb inhibits tumor growth through inhibition of tumor cell proliferation and survival signaling and by enhancing the host antitumor immune response.

Sample Metadata Fields

Sex, Specimen part, Disease, Cell line, Race, Time

View Samples
accession-icon GSE42048
TWEAK-treated time course in ACHN cells grown as xenografts
  • organism-icon Homo sapiens
  • sample-icon 59 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Tumor necrosis factor-related weak inducer of apoptosis, TWEAK, is a TNF superfamily member that mediates signaling through its receptor fibroblast growth factor inducible-14, Fn14. In tumor cell lines, TWEAK induces proliferation, survival and NF-kappaB signaling and gene expression that promote tumor growth and suppress antitumor immune responses. Anti-TWEAK antibody, RG7212, inhibits tumor growth in vivo with decreases in pathway activation markers and modulation of tumor, blood and spleen immune cell composition. Candidate response prediction markers, including Fn14, have been identified in mouse models. Phase I pharmacodynamic data from patients are consistent with preclinical results. TWEAK:Fn14 signaling is upregulated in human cancer and pathway activation induces tumor proliferation and survival signaling. Blockade with anti-TWEAK mAb, RG7212, inhibits tumor growth in multiple models in mice. TWEAK induces changes that suppress anti-tumor immune responses and RG7212 blocks these effects resulting in changes in tumor immune cell composition and decreases in cytokines that promote immunosuppression. Antitumor efficacy in mice was observed in a range of Fn14 expressing models with pathway activation and expressing either wild-type or mutant p53, BRAF or KRAS suggesting both a patient selection strategy and potential broad clinical applicability. Preclinical mechanism of action hypotheses are supported by Phase I clinical data, with decreases in proliferation markers and increased tumor T cell infiltration.

Publication Title

RG7212 anti-TWEAK mAb inhibits tumor growth through inhibition of tumor cell proliferation and survival signaling and by enhancing the host antitumor immune response.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE22553
Cardiac Effects of Rosiglitazone in Male Wistar Rats
  • organism-icon Rattus norvegicus
  • sample-icon 62 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Rosiglitazone, a peroxisome proliferator-activated receptor g (PPARg) agonist of the thiazolidinedione class, is a major insulin-sensitizing drug widely used to treat type-2 diabetes. Rosiglitazone causes myocardial hypertrophy in rodents and increases the risk of cardiac events in man. To better characterize its cardiac effects, male Wistar rats were orally administered 0, 10 or 80 mg/kg/day rosiglitazone.

Publication Title

No associated publication

Sample Metadata Fields

Sex

View Samples
accession-icon GSE112273
Cobomarsen, an Oligonucleotide Inhibitor of miR-155, Coordinately Regulates Multiple Survival Pathways to Reduce Cellular Proliferation and Survival in Cutaneous T-Cell Lymphoma
  • organism-icon Homo sapiens
  • sample-icon 54 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

miR-155 is a microRNA associated with poor prognosis in lymphoma and leukemia and has been implicated in the progression of Mycosis Fungoides (MF), the most common form of cutaneous T-cell lymphoma (CTCL). In this study, we developed and tested Cobomarsen (MRG-106), a locked nucleic acid-modified oligonucleotide inhibitor of miR-155. In MF cell lines in vitro, inhibition of miR-155 with Cobomarsen de-repressed direct miR-155 targets, decreased expression of multiple gene pathways associated with cell survival, reduced survival signaling, decreased cell proliferation, and activated apoptosis.

Publication Title

Cobomarsen, an oligonucleotide inhibitor of miR-155, co-ordinately regulates multiple survival pathways to reduce cellular proliferation and survival in cutaneous T-cell lymphoma.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE41828
TWEAK-treated time course in U2OS cells.
  • organism-icon Homo sapiens
  • sample-icon 49 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Tumor necrosis factor-related weak inducer of apoptosis, TWEAK, is a TNF superfamily member that mediates signaling through its receptor fibroblast growth factor inducible-14, Fn14. In tumor cell lines, TWEAK induces proliferation, survival and NF-kappaB signaling and gene expression that promote tumor growth and suppress antitumor immune responses. Anti-TWEAK antibody, RG7212, inhibits tumor growth in vivo with decreases in pathway activation markers and modulation of tumor, blood and spleen immune cell composition. Candidate response prediction markers, including Fn14, have been identified in mouse models. Phase I pharmacodynamic data from patients are consistent with preclinical results. TWEAK:Fn14 signaling is upregulated in human cancer and pathway activation induces tumor proliferation and survival signaling. Blockade with anti-TWEAK mAb, RG7212, inhibits tumor growth in multiple models in mice. TWEAK induces changes that suppress anti-tumor immune responses and RG7212 blocks these effects resulting in changes in tumor immune cell composition and decreases in cytokines that promote immunosuppression. Antitumor efficacy in mice was observed in a range of Fn14 expressing models with pathway activation and expressing either wild-type or mutant p53, BRAF or KRAS suggesting both a patient selection strategy and potential broad clinical applicability. Preclinical mechanism of action hypotheses are supported by Phase I clinical data, with decreases in proliferation markers and increased tumor T cell infiltration.

Publication Title

RG7212 anti-TWEAK mAb inhibits tumor growth through inhibition of tumor cell proliferation and survival signaling and by enhancing the host antitumor immune response.

Sample Metadata Fields

Sex, Disease, Cell line, Race, Time

View Samples
accession-icon GSE42045
TWEAK-treated time course in MDA-MB-436 cells
  • organism-icon Homo sapiens
  • sample-icon 48 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Tumor necrosis factor-related weak inducer of apoptosis, TWEAK, is a TNF superfamily member that mediates signaling through its receptor fibroblast growth factor inducible-14, Fn14. In tumor cell lines, TWEAK induces proliferation, survival and NF-kappaB signaling and gene expression that promote tumor growth and suppress antitumor immune responses. Anti-TWEAK antibody, RG7212, inhibits tumor growth in vivo with decreases in pathway activation markers and modulation of tumor, blood and spleen immune cell composition. Candidate response prediction markers, including Fn14, have been identified in mouse models. Phase I pharmacodynamic data from patients are consistent with preclinical results. TWEAK:Fn14 signaling is upregulated in human cancer and pathway activation induces tumor proliferation and survival signaling. Blockade with anti-TWEAK mAb, RG7212, inhibits tumor growth in multiple models in mice. TWEAK induces changes that suppress anti-tumor immune responses and RG7212 blocks these effects resulting in changes in tumor immune cell composition and decreases in cytokines that promote immunosuppression. Antitumor efficacy in mice was observed in a range of Fn14 expressing models with pathway activation and expressing either wild-type or mutant p53, BRAF or KRAS suggesting both a patient selection strategy and potential broad clinical applicability. Preclinical mechanism of action hypotheses are supported by Phase I clinical data, with decreases in proliferation markers and increased tumor T cell infiltration.

Publication Title

RG7212 anti-TWEAK mAb inhibits tumor growth through inhibition of tumor cell proliferation and survival signaling and by enhancing the host antitumor immune response.

Sample Metadata Fields

Sex, Specimen part, Cell line, Race

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact