refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Showing
of 436 results
Sort by

Filters

Technology

Platform

accession-icon GSE42261
Notch Pathway Activation Targets AML Cell Homeostasis and Differentiation
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Notch pathway activation targets AML-initiating cell homeostasis and differentiation.

Sample Metadata Fields

Sex, Specimen part, Cell line, Treatment

View Samples
accession-icon GSE42260
Notch Pathway Activation Targets AML Cell Homeostasis and Differentiation: MLL-AF9 transformed LGMP
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To determine role of Notch signaling in AML leukemia initiating cells we used a conditional mouse knock-in model of Notch1-IC to induce Notch1-IC expression in MLL-AF9 transformed LGMP. WT and Notch1-IC+ LGMP were analyzed to determined genes controlled by Notch signaling.

Publication Title

Notch pathway activation targets AML-initiating cell homeostasis and differentiation.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE5823
Effects of RNA interference-mediated c-MYC depletion on gene expression profiles in human cancer cell lines
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Affymetrix Hu133 GeneCHIP Microarray data for Control and c-MYC knock-down (KD) human cancer cell lines.

Publication Title

Novel c-MYC target genes mediate differential effects on cell proliferation and migration.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE45626
Expression data from IGF-1R targeting in 33 NCI-H526 SCLC (small-cell lung cancer) xenografts
  • organism-icon Homo sapiens
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Insulin-like growth factor receptor-1 (IGF-1R) inhibition could be a relevant therapeutic approach in small cell lung cancer (SCLC) given the importance of an IGF-1R autocrine loop and its role in DNA damage repair processes. We assessed IGF-1R and pAkt protein expression in 83 SCLC human specimens. The efficacy of R1507 (a monoclonal antibody directed against IGF-1R) alone or combined with cisplatin or ionizing radiation (IR) was evaluated in H69, H146 and H526 cells in vitro and in vivo. Innovative genomic and functional approaches were conducted to analyze the molecular behavior under the different treatment conditions. A total of 53% and 37% of human specimens expressed IGF-1R and pAkt, respectively. R1507 demonstrated single agent activity in H146 and H526 cells but not in H69 cells. R1507 exhibited synergistic effects with both Cisplatin and IR in vitro. The triple combination R1507-Cisplatin-IR led to a dramatic delay in tumor growth compared to Cisplatin-IR in H526 cells. Analyzing the apparent absence of antitumoral effect of R1507 alone in vivo, we observed a transient reduction of IGF-1R staining intensity in vivo, concomitant to the activation of multiple cell surface receptors and intracellular proteins involved in proliferation, angiogenesis and survival. Finally, we identified that the nucleotide excision repair pathway (NER) was mediated after exposure to R1507-CDDP and R1507-IR in vitro and in vivo. In conclusion, adding R1507 to the current standard Cisplatin-IR doublet reveals remarkable chemo- and radiosensitizing effects in selected SCLC models and warrants to be investigated in the clinical setting.

Publication Title

IGF-1R targeting increases the antitumor effects of DNA-damaging agents in SCLC model: an opportunity to increase the efficacy of standard therapy.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE20666
Aberrant heterochromatic foci are associated to deregulation of the GMCL1 gene in CH1 lymphoma B cells
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Chromosome 1 pericentric heterochromatin rearrangements : potent drivers of nuclear architecture perturbations and gene deregulation in human B cell lymphoma

Publication Title

No associated publication

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE108297
Integrative genomic and cellular analyses of blood and T cells from HIV-1 controllers reveal a low inflammatory profile associated with strong HIV-specific adaptive responses
  • organism-icon Homo sapiens
  • sample-icon 39 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE72970
Molecular subtypes of metastatic colorectal cancer are predictive of patient response to chemo and targeted therapies
  • organism-icon Homo sapiens
  • sample-icon 112 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Molecular subtypes of metastatic colorectal cancer are associated with patient response to irinotecan-based therapies.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE56113
Superiority of spatially fractionated over broad beam synchrotron radiotherapy
  • organism-icon Rattus norvegicus
  • sample-icon 115 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Transcriptomic response of tumoral and normal brain tissue, treated with the MRT irradiation or the BB irradiation, after 6 h, 48 h, 8 days, 15 days, using Affymetrix GeneChip Rat 230_ 2.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE62322
Gene expression signature in advanced colorectal cancer patients select drugs and response for the use of leucovorin, fluorouracil, and irinotecan
  • organism-icon Homo sapiens
  • sample-icon 112 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a), Affymetrix Human Genome U133B Array (hgu133b)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Gene expression signature in advanced colorectal cancer patients select drugs and response for the use of leucovorin, fluorouracil, and irinotecan.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
accession-icon GSE108294
Integrative genomic and cellular analyses of blood and T cells from HIV-1 controllers reveal a low inflammatory profile associated with strong HIV-specific adaptive responses [PBMC]
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Without treatment, HIV-1 infection is characterized in the majority of individuals by a detectable HIV replication and a rapid decline in CD4+ T lymphocytes leading to AIDS. However, a minority of patients, called HIV Controllers (HIC), maintains spontaneous control of HIV replication and for a large part, normal CD4+ T cell counts. The mechanisms leading to this spontaneous virus control are not fully known. We used gene expression and functional cellular analyses to compare EC and chronically HIV-1 infected individuals with controlled virus replication under combined antiretroviral therapy (cART). In the blood, EC individuals are characterized by a low inflammation, a down modulation of NK inhibitory cell signaling and an up regulation of T-cell activation gene expression profiles. Interestingly, in contrast to cART individuals, this balance persists following in vitro stimulation of cells from HIC with HIV antigens. This favourable genetic profile in HIC was also consistent with functional analyses showing a bias towards a Th1 and cytotoxic T cell profile and a lower production of inflammatory cytokines. Finally, taking advantage of the characterization of HIC based upon their in vitro CD8+ T lymphocyte capacity of killing HIV-infected cells, we show that unsupervised genetic analysis of differentially expressed genes fits clearly with this cytotoxic activity allowing the characterization of a specific signature of HIC individuals. Globally, these results reveal significant features of HIC making the bridge between cellular function and gene signatures and the regulation of inflammation and killing capacity of HIV-specific CD8+T cells. Moreover, these genetic profiles are consistent through analyses performed from whole blood to PBMC and at the T-cell population levels. Likely, these data help to define the goals of immunotherapeutic approaches in the perspective of HIV-1 functional cure. These strategies would need to induce both strong HIV-1-specific immune responses whereas minimizing inflammation.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact