refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 3431 results
Sort by

Filters

Technology

Platform

accession-icon GSE45229
Unique pharmacological actions of atypical neuroleptic quetiapine: possible role in cell cycle/fate control
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Quetiapine is an atypical neuroleptic with a pharmacological profile distinct from classic neuroleptics. It is currently approved for treating patients with schizophrenia, major depression and bipolar I disorder. However, its cellular effects remain elusive.

Publication Title

Unique pharmacological actions of atypical neuroleptic quetiapine: possible role in cell cycle/fate control.

Sample Metadata Fields

Sex, Treatment

View Samples
accession-icon GSE21336
GBM_SC_retinoic acid_gene_expression
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

This study compared the gene expression change of glioblastoma stem-like cells before and after retinoic acid treatment

Publication Title

Regulation of glioblastoma stem cells by retinoic acid: role for Notch pathway inhibition.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE52571
The long non-coding RNA Paupar regulates the expression of both local and distal genes
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The long non-coding RNA Paupar regulates the expression of both local and distal genes.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE52568
The long non-coding RNA Paupar regulates the expression of both local and distal genes [Pax6 KD]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Although some long noncoding RNAs (lncRNAs) have been shown to regulate gene expression in cis, it remains unclear whether lncRNAs can directly regulate transcription in trans by interacting with chromatin genome-wide independently of their sites of synthesis. Here, we describe the genomically local and more distal functions of Paupar, a vertebrate-conserved and central nervous system-expressed lncRNA transcribed from a locus upstream of the gene encoding the Pax6 transcription factor. Knockdown of Paupar disrupts the normal cell cycle profile of neuroblastoma cells and induces neuronal differentiation. Paupar acts in a transcript-dependent manner both locally, to regulate Pax6, as well as distally by binding and regulating genes on multiple chromosomes, in part through physical association with Pax6 protein. Paupar binding sites are enriched near promoters and can function as transcriptional regulatory elements whose activity is modulated by Paupar transcript levels. Our findings demonstrate that a lncRNA can function in trans at transcriptional regulatory elements distinct from its site of synthesis to control large-scale transcriptional programmes.

Publication Title

The long non-coding RNA Paupar regulates the expression of both local and distal genes.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE52569
The long non-coding RNA Paupar regulates the expression of both local and distal genes [Paupar KD]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Although some long noncoding RNAs (lncRNAs) have been shown to regulate gene expression in cis, it remains unclear whether lncRNAs can directly regulate transcription in trans by interacting with chromatin genome-wide independently of their sites of synthesis. Here, we describe the genomically local and more distal functions of Paupar, a vertebrate-conserved and central nervous system-expressed lncRNA transcribed from a locus upstream of the gene encoding the Pax6 transcription factor. Knockdown of Paupar disrupts the normal cell cycle profile of neuroblastoma cells and induces neuronal differentiation. Paupar acts in a transcript-dependent manner both locally, to regulate Pax6, as well as distally by binding and regulating genes on multiple chromosomes, in part through physical association with Pax6 protein. Paupar binding sites are enriched near promoters and can function as transcriptional regulatory elements whose activity is modulated by Paupar transcript levels. Our findings demonstrate that a lncRNA can function in trans at transcriptional regulatory elements distinct from its site of synthesis to control large-scale transcriptional programmes.

Publication Title

The long non-coding RNA Paupar regulates the expression of both local and distal genes.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE57542
Expression data measured by Nanostring and microarray of monocyte-derived dendritic cells from healthy individuals stimulated with LPS, influenza, or IFN-beta, or left unstimulated
  • organism-icon Homo sapiens
  • sample-icon 228 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Common genetic variants modulate pathogen-sensing responses in human dendritic cells.

Sample Metadata Fields

Sex, Age, Race, Subject

View Samples
accession-icon GSE36139
SNP and Expression data from the Cancer Cell Line Encyclopedia (CCLE)
  • organism-icon Homo sapiens
  • sample-icon 882 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE36133
Expression data from the Cancer Cell Line Encyclopedia (CCLE)
  • organism-icon Homo sapiens
  • sample-icon 882 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The Cancer Cell Line Encyclopedia (CCLE) project is a collaboration between the Broad Institute, the Novartis Institutes for Biomedical Research and the Genomics Novartis Foundation to conduct a detailed genetic and pharmacologic characterization of a large panel of human cancer models

Publication Title

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE17312
BI Human Reference Epigenome Mapping Project
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The NIH Roadmap Epigenomics Mapping Consortium aims to produce a public resource of epigenomic maps for stem cells and primary ex vivo tissues selected to represent the normal counterparts of tissues and organ systems frequently involved in human disease.

Publication Title

The NIH Roadmap Epigenomics Mapping Consortium.

Sample Metadata Fields

Sex, Specimen part, Disease, Subject

View Samples
accession-icon GSE5258
Connectivity Map dataset (build01)
  • organism-icon Homo sapiens
  • sample-icon 346 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

A reference collection of genome-wide transcriptional expression data for bioactive small molecules.

Publication Title

The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact