refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Showing
of 420 results
Sort by

Filters

Technology

Platform

accession-icon GSE34200
The NIH Human Pluripotent Stem Cell Database
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

StemCellDB: the human pluripotent stem cell database at the National Institutes of Health.

Sample Metadata Fields

Sex, Specimen part, Cell line

View Samples
accession-icon GSE97493
Altered expression of the Cdk5 activator-like protein, Cdk5, causes neurodegeneration, in part by accelerating the rate of aging.
  • organism-icon Drosophila melanogaster
  • sample-icon 76 Downloadable Samples
  • Technology Badge Icon Drosophila Gene 1.0 ST Array (drogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Altered expression of the Cdk5 activator-like protein, Cdk5α, causes neurodegeneration, in part by accelerating the rate of aging.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE78116
Differentiation of human and murine induced pluripotent stem cells to microglia-like cells
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st), Affymetrix Mouse Gene 1.1 ST Array (mogene11st), Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Differentiation of human and murine induced pluripotent stem cells to microglia-like cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE97491
Altered expression of the Cdk5 activator-like protein, Cdk5, causes neurodegeneration, in part by accelerating the rate of aging.
  • organism-icon Drosophila melanogaster
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Drosophila Gene 1.0 ST Array (drogene10st)

Description

Aging is the greatest risk factor for neurodegeneration, but the connection between the two processes remains opaque. This is in part for want of a rigorous way to define physiological age, as opposed to chronological age. Here, we develop a comprehensive metric for physiological age in Drosophila, based on genome-wide expression profiling. We applied this metric to a model of adult-onset neurodegeneration, increased or decreased expression of the activating subunit of the Cdk5 protein kinase, encoded by the gene Cdk5, the ortholog of mammalian p35. Cdk5-mediated degeneration was associated with a 27-150% acceleration of the intrinsic rate of aging, depending on the tissue and genetic manipulation. Gene ontology analysis and direct experimental tests revealed that affected age-associated processes included numerous core phenotypes of neurodegeneration, including enhanced oxidative stress and impaired proteostasis. Taken together, our results suggest that Cdk5-mediated neurodegeneration results from accelerated aging, in combination with cell-autonomous neuronal insults. These data fundamentally recast our picture of the relationship between neurodegeneration and its most prominent risk factor, natural aging.

Publication Title

Altered expression of the Cdk5 activator-like protein, Cdk5α, causes neurodegeneration, in part by accelerating the rate of aging.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE97492
Altered expression of the Cdk5 activator-like protein, Cdk5, causes neurodegeneration, in part by accelerating the rate of aging.
  • organism-icon Drosophila melanogaster
  • sample-icon 40 Downloadable Samples
  • Technology Badge Icon Drosophila Gene 1.0 ST Array (drogene10st)

Description

Aging is the greatest risk factor for neurodegeneration, but the connection between the two processes remains opaque. This is in part for want of a rigorous way to define physiological age, as opposed to chronological age. Here, we develop a comprehensive metric for physiological age in Drosophila, based on genome-wide expression profiling. We applied this metric to a model of adult-onset neurodegeneration, increased or decreased expression of the activating subunit of the Cdk5 protein kinase, encoded by the gene Cdk5, the ortholog of mammalian p35. Cdk5-mediated degeneration was associated with a 27-150% acceleration of the intrinsic rate of aging, depending on the tissue and genetic manipulation. Gene ontology analysis and direct experimental tests revealed that affected age-associated processes included numerous core phenotypes of neurodegeneration, including enhanced oxidative stress and impaired proteostasis. Taken together, our results suggest that Cdk5-mediated neurodegeneration results from accelerated aging, in combination with cell-autonomous neuronal insults. These data fundamentally recast our picture of the relationship between neurodegeneration and its most prominent risk factor, natural aging.

Publication Title

Altered expression of the Cdk5 activator-like protein, Cdk5α, causes neurodegeneration, in part by accelerating the rate of aging.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE66988
Retinoid X Receptor activation reverses the age-related deficiency in myelin debris phagocytosis and enhances remyelination
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The efficiency of central nervous system (CNS) remyelination declines with age. This is in part due to an age-associated decline in the phagocytic removal of myelin debris, which contains inhibitors of oligodendrocyte progenitor cell differentiation. In this study we show that expression of genes involved in the retinoid X receptor (RXR) pathway are decreased with aging in myelin-phagocytosing cells. Loss of RXR function in young macrophages mimics aging by delaying remyelination after experimentally-induced demyelination, while RXR agonists partially restore myelin debris phagocytosis in aged macrophages. The FDA-approved RXR agonist bexarotene, when used in concentrations achievable in human subjects, caused a reversion of the gene expression profile in aging human monocytes to a more youthful profile. These results reveal the RXR pathway as a positive regulator of myelin debris clearance and a key player in the age-related decline in remyelination that may be targeted by available or newly-developed therapeutics.

Publication Title

Retinoid X receptor activation reverses age-related deficiencies in myelin debris phagocytosis and remyelination.

Sample Metadata Fields

Specimen part, Disease, Treatment

View Samples
accession-icon GSE96733
Ubc9 overexpression and SUMO1 deficiency blunt inflammation after intestinal ischemia/reperfusion.
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Clariom S Array (clariomsmouse)

Description

The intestinal epithelium constitutes a crucial defense to the potentially life-threatening effects of gut microbiota. However, due to a complex underlying vasculature, hypoperfusion and resultant tissue ischemia pose a particular risk to function and integrity of the epithelium. The small ubiquitin-like modifier (SUMO) conjugation pathway critically regulates adaptive responses to metabolic stress and is of particular significance in the gut, as inducible knockout of the SUMO-conjugating enzyme Ubc9 results in rapid intestinal epithelial disintegration. Here we analyzed the pattern of individual SUMO isoforms in intestinal epithelium and investigated their roles in intestinal ischemia/reperfusion (I/R) damage. Immunostaining revealed that epithelial SUMO2/3 expression was almost exclusively limited to crypt epithelial nuclei in unchallenged mice. However, intestinal I/R or overexpression of Ubc9 caused a remarkable enhancement of epithelial SUMO2/3 staining along the crypt-villus axis. Unexpectedly, a similar pattern was found in SUMO1 knockout mice. Ubc9 transgenic mice, but also SUMO1 knockout mice were protected from I/R injury as evidenced by better preserved barrier function and blunted inflammatory responses. PCR array analysis of microdissected villus-tip epithelia revealed a specific epithelial contribution to reduced inflammatory responses in Ubc9 transgenic mice, as key chemotactic signaling molecules such as IL17A were significantly downregulated. Together, our data indicate a critical role particularly of the SUMO2/3 isoforms in modulating responses to I/R and provide the first evidence that SUMO1 deletion activates a compensatory process that protects from ischemic damage.

Publication Title

Ubc9 overexpression and SUMO1 deficiency blunt inflammation after intestinal ischemia/reperfusion.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE47605
Differentiation of human and murine induced pluripotent stem cells to microglia-like cells [mouse]
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st), Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Microglia are the resident inflammatory cells of the central nervous system (CNS) and have important roles in development, homeostasis and a variety of neurologic and psychiatric diseases. Difficulties in procuring human microglia have limited their study and hampered the clinical translation of microglia-based treatments shown to be effective in animal disease models. Here, we report the differentiation of human induced pluripotent stem cells (iPSC) into microglia-like cells by exposure to defined factors and co-culture with astrocytes. These iPSC-derived microglia (iPS-MG) have the phenotype, gene expression profile and functional properties of brain-isolated microglia. Murine iPS-MG generated using a similar protocol have equivalent efficacy to primary brain-isolated microglia in the treatment of murine syngeneic intracranial malignant gliomas. The ability to generate human microglia facilitates the further study of this important CNS cell type and raises the possibility of their use in personalized medicine applications.

Publication Title

Differentiation of human and murine induced pluripotent stem cells to microglia-like cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE78115
Differentiation of human and murine induced pluripotent stem cells to microglia-like cells [human]
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st), Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Microglia are myeloid-lineage inflammatory cells that activate innate and adaptive immune responses within the central nervous system (CNS). They also have important roles in CNS development and homeostasis and can modulate the course of a variety of CNS diseases. We report here the sequential differentiation of murine induced pluripotent stem cells (iPSC) into hematopoietic progenitor-like cells and then into cells with a phenotype and gene expression profile resembling that of primary brain-isolated microglia. Functionally, the iPSC-derived microglia (iPS-MG) produce inflammatory cytokines and reactive oxygen species, demonstrate phagocytic activity and migrate to areas of pathology within the brain following intracranial injection. The ability to readily generate iPS-MG in vitro will facilitate the study of normal and disease-specific microglia and be useful for the development of microglia-based treatments for CNS diseases.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE43794
Differentiation of human fetal multipotential neural progenitor cells to astrocytes reveals susceptibility factors for JC Virus
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Viral infections of the CNS are of increasing concern, especially among immunocompromised populations. Rodent models are often inappropriate for studies of CNS infection, as many viruses, including JC Virus (JCV) and HIV, cannot replicate in rodent cells. Consequently, human fetal brain-derived multipotential CNS progenitor cells (NPCs) that can be differentiated into neurons, oligodendrocytes, or astrocytes, have served as a model for CNS studies. NPCs can be non-productively infected by JCV, while infection of progenitor-derived astrocytes (PDAs) is robust. We profiled cellular gene expression at multiple times during differentiation of NPCs to PDAs. Several activated transcription factors show commonality between cells of the brain in which JCV replicates and lymphocytes in which JCV is likely latent. Bioinformatic analysis determined transcription factors that may influence the favorable transcriptional environment for JCV in PDAs. This study attempts to provide a framework for understanding the functional transcriptional profile necessary for productive JCV infection.

Publication Title

Differentiation of human fetal multipotential neural progenitor cells to astrocytes reveals susceptibility factors for JC virus.

Sample Metadata Fields

Specimen part, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact