refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1319 results
Sort by

Filters

Technology

Platform

accession-icon SRP154280
Alternative Splicing regulation protein subcellular localization
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The impact of the transcriptome-wide alternative splicing on proteomic-wide protein subcellular localization was investigated by analyzing RNA-Seq data.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part, Disease, Cell line

View Samples
accession-icon SRP078574
Generating STAT3/5 resistant human breast cancer cell lines (MDA-MB-231 & T47D) using chronic treatment with SH-4-54
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500

Description

MDA-MB-231 and T47D human breast cancer cells were chronically treated with the novel STAT3/5 inhibitor SH-4-54 for 60 and 30 days, respectively. Surviving treatment-resistant individual clones were isolated and characterized for their phosphorylated STAT3 and phosphorylated STAT5 status. 3 biological replicates of mRNA from a representative resistant clone derived from both MDA-MB-231 and T47D cells, in parallel with mRNA from their respective wild-type counterparts, was subjected to NextGeneration Sequencing to analyze changes in gene expression between untreated and resistant cells.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part, Cell line, Treatment

View Samples
accession-icon SRP145098
Differentially regulated genes in Esr2-mutant rat granulosa cells.
  • organism-icon Rattus norvegicus
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

RNA seq analyses were performed in granulosa cells (GCs) collected from gonadotropin treated ESR2 mutant rats. Data obtained from a null mutant with Esr2 exon 3 deletion (?3) and another DNA binding domain (DBD) mutant with exon 4 deletion (?4) were compared to that of wildtype (WT) rats. The raw data were analyzed using CLC genomics workbench. High quality RNA-sequencing reads were aligned to the Rattus norvegicus genome. Differentially expressed genes in ?3 or ?4 Esr2-mutant GCs were identified based on the following criteria: FDR p-Value =0.05 and an absolute fold change of 2. Fewer differentially expressed genes were identified in ?3 compared to the ?4 mutant group. As both of the mutant groups demonstrated a common phenotype of ovulation failure, differentially expressed genes common to both in ?3 and ?4 mutant rats were emphasized and further analyzed in the companion article “ESR2 regulates granulosa cell genes essential for follicle maturation and ovulation” (Khristi et al., 2018).

Publication Title

ESR2 regulates granulosa cell genes essential for follicle maturation and ovulation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP133083
Mouse postnatal day 12 oocyte RNA-seq
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

The goal of this study was to perform RNA-seq on postnatal day 12 mouse oocytes to quantify gene expression.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part, Disease, Cell line

View Samples
accession-icon SRP153919
Hyperactivation of MAPK signaling is deleterious to RAS/RAF mutant melanoma
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

The most frequent genetic alterations in melanoma are gain-of-function mutations in BRAF, which result in addiction to the RAF-MEK-ERK signaling pathway. Despite success of RAF and MEK inhibitors in treating BRAFV600 mutant tumors, a major challenge is the inevitable emergence of drug resistance, which often involves reactivation of the MAPK pathway. Interestingly, resistant tumors are often sensitive to drug withdrawal, suggesting that hyperactivation of the MAPK pathway is not tolerated. To further characterize this phenomenon, we generated isogenic models of inducible MAPK hyperactivation in BRAFV600E melanoma cells by overexpression of ERK2. Using this model system, we demonstrated that supra-physiological levels of MAPK signaling led to cell death, which was reversed by MAPK inhibitors. Whereas MAPK pathway inhibition led to cell stasis in BRAFV600E melanoma cells, MAPK hyperactivation induced cytotoxicity. Furthermore, complete tumor regression was observed in an ERK2 overexpressing xenograft model. To identify mediators of MAPK hyperactivation- induced cell death, we conducted a large-scale pooled screen which showed that only shRNAs against BRAF and MAP2K1 rescued loss of cell viability. This suggested that no single downstream ERK2 effector was required, consistent with pleiotropic effects on multiple cellular stress pathways. Intriguingly, the detrimental effect of MAPK hyperactivation could be partially attributed to secreted factors, and more than 100 differentially secreted proteins were identified. The effect of ERK2 overexpression was highly context dependent, as RAS/RAF mutant but not RAS/RAF wildtype melanoma were sensitive to this perturbation. This vulnerability to MAPK hyperactivation raises the possibility of a novel therapeutic approach for RAS/RAF mutant cancers.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part, Disease, Cell line, Treatment

View Samples
accession-icon E-MEXP-122
Transcription profiling of leukemic cells of monozygotic twins
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

We established gene expression profiles of diagnostic bone marrow samples of monozygotic twins with acute lymphoblastic leukemia. We established technical duplicates for each twin.

Publication Title

Prenatal origin of separate evolution of leukemia in identical twins.

Sample Metadata Fields

Sex, Specimen part, Disease, Disease stage

View Samples
accession-icon SRP062885
Transcriptome seuqnencing of hepatocellular carcinoma(HCC) patients associated with Hepatitis B Virus(HBV)
  • organism-icon Homo sapiens
  • sample-icon 32 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Transcriptome seqeunecing on 16 paired HCCs and non-tumorous livers to investigate the effect of HBV integration

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP104418
RNASeq_Fibroblasts_Rapamycin&MethionineRestriction
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

old and young human cardiac fibroblasts plus those treated with rapamycin and methionine restriction or a combination of both

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP070780
RNA-sequencing of metaplastic carcinoma of the breast
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerII

Description

No description.

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon ERP004917
PTEN action in leukemia dictated by the tissue microenvironment
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

PTEN encodes a lipid phosphatase that is underexpressed in many cancers owing to deletions, mutations or gene silencing. PTEN dephosphorylates phosphatidylinositol 3,4,5-triphosphate (PIP3), thereby opposing the activity of class I phosphatidylinositol 3-kinases (PI3Ks) that mediate growth and survival factors signaling through PI3K effectors such as AKT and mTOR. To determine whether continued PTEN inactivation is required to maintain malignancy, we generated an RNAi-based transgenic mouse model that allows tetracycline-dependent regulation of PTEN in a time- and tissue-specific manner. Postnatal PTEN knockdown in the hematopoietic compartment produced highly disseminated T-cell leukemia (T-ALL). Surprisingly, reactivation of PTEN mainly reduced T-ALL dissemination but had little effect on tumor load in hematopoietic organs. Lymphoma infiltration into the intestine was dependent on CCR9 G-protein coupled receptor (GPCR) signaling, which was amplified by PTEN loss. Our results suggest that in the absence of PTEN, GPCRs may play an unanticipated role in driving tumor growth and invasion in an unsupportive environment. They further reveal that the role of PTEN loss in tumor maintenance is not invariant and can be influenced by the tissue microenvironment, thereby producing a form of intratumoral heterogeneity that is independent of cancer genotype.

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact