refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Build and Download Custom Datasets
refine.bio helps you build ready-to-use datasets with normalized transcriptome data from all of the world’s genetic databases.
Showing 4 of 4 results
Sort by

Filters

Technology

Platform

accession-icon GSE5799
S_aureus_&_triclosan
  • organism-icon Staphylococcus aureus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix S. aureus Genome Array (saureus)

Description

A triclosan-ciprofloxacin cross-resistant mutant strain of Staphylococcus aureus displays an alteration in the expression of several cell membrane structural and functional genes.

Publication Title

A triclosan-ciprofloxacin cross-resistant mutant strain of Staphylococcus aureus displays an alteration in the expression of several cell membrane structural and functional genes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6332
Molecular Signatures of Trauma Hemorrhagic Shock-Induced Lung Injury: Hemorrhage- and Injury-Associated Genes
  • organism-icon Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome U34 Array (rgu34a)

Description

The etiology of trauma-hemorrhage shock-induced acute lung injury has been difficult to elucidate due, at least in part, to the inability of in vivo studies to separate the non-injurious pulmonary effects of trauma-hemorrhage from the tissue injurious ones. To circumvent this in vivo limitation, we utilized a model of trauma-hemorrhagic shock (T/HS) in which T/HS-lung injury was abrogated by dividing the mesenteric lymph duct. In this way, it was possible to separate the pulmonary injurious response from the non-injurious systemic response to T/HS by comparing the pulmonary molecular response of rats subjected to T/HS which did and did not develop lung injury as well as to non-shocked rats. Utilizing high-density oligonucleotide arrays and treatment group comparisons of whole lung tissue collected at 3 hours after the end of the shock or sham-shock period, 139 of the 8,799 assessed genes were differentially expressed.

Publication Title

Molecular signatures of trauma-hemorrhagic shock-induced lung injury: hemorrhage- and injury-associated genes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE83716
Interferon protects primary macrophages against HIV infection
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Interferon (IFN) is a unique type I IFN that is not induced by pattern-recognition response elements. IFN is constitutively expressed in mucosal tissues including the female genital mucosa. We show here that IFN induces an antiviral state in human macrophages that blocks HIV-1 replication.

Publication Title

IFN-<b>ε</b> protects primary macrophages against HIV infection.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE48027
Host directed activity of Pyrazinamide in Mycobacterium tuberculosis infection
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Pyrazinamide (PZA) is one of the first line antibiotics used for the treatment of tuberculosis (TB). we have used human monocyte and a mouse model of pulmonary TB to investigate whether treatment with PZA, in addition to its known anti-mycobacterial properties, modulate the host immune response during Mycobacterium tuberculosis (Mtb) infection.

Publication Title

Host targeted activity of pyrazinamide in Mycobacterium tuberculosis infection.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact