refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Showing
of 9883 results
Sort by

Filters

Technology

Platform

accession-icon SRP178159
Clinical study of human mesenchymal stem cells on the treatment of severe liver disease
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

we aimed to explore the potential therapeutic effects of human mesenchymal stem cell on severe liver disease

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part, Cell line

View Samples
accession-icon SRP131607
Compare RNA expression of Old Fibroblast to RNA expression of Young Fbroblast
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Analyze of RNA expression of Old Fibroblast and Young Fibroblast. Compare RNA expression of Old Fibroblast to RNA expression of Young Fbroblast

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP131659
Compare RNA expression of UVA fibroblast to sham fibroblast
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

we analysis of sham fibroblast and UVA fibroblast RNA expression using RNA sequencing and compare RNA expression.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP188485
miR-25 knock out mice kidney RNA sequencing
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

We generate miR-25 KO mice by Cas-9 technology, and run 5 month kidney RNA sequencing.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part, Cell line

View Samples
accession-icon SRP129355
Gene expression change affected by Sirt1 depletion and ionizing radiation in adult neural stem cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Adult neural stem cells derived from wild type and Sirt1 conditional knockout mice were treated with or without X-ray, the total RNA extracted from these cells were used for RNA sequencing.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Age, Specimen part, Cell line

View Samples
accession-icon SRP189703
circRNA sequence of HeLa S3 nucleus
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 3000

Description

No description.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE29903
Identification of inflammatory gene modules based on variations of human endothelial cell responses to oxidized lipids
  • organism-icon Homo sapiens
  • sample-icon 72 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Oxidized phospholipids are thought to promote atherogenesis by stimulating endothelial cells (ECs) to produce inflammatory cytokines, such as IL-8. In studies with mouse models, we previously demonstrated that genetic variation in inflammatory responses of endothelial cells to oxidized lipids contributes importantly to atherosclerosis susceptibility. We now show that similar variations occur in cultured aortic ECs derived from multiple heart transplant donors. These variations were stably maintained between passages and, thus, reflect either genetic or epigenetic regulatory differences. Expression array analysis of aortic EC cultures derived from 12 individuals revealed that >1,000 genes were regulated by oxidized phospholipids. We have used the observed variations in the sampled population to construct a gene coexpression network comprised of 15 modules of highly connected genes. We show that several identified modules are significantly enriched in genes for known pathways and confirm a module enriched for unfolded protein response (UPR) genes using siRNA and the UPR inducer tunicamycin. On the basis of the constructed network, we predicted that a gene of unknown function (MGC4504) present in the UPR module is a target for UPR transcriptional activator ATF4. Our data also indicate that IL-8 is present in the UPR module and is regulated, in part, by the UPR. We validate these by using siRNA. In conclusion, we show that interindividual variability can be used to group genes into pathways and predict gene-gene regulatory relationships, thus identifying targets potentially involved in susceptibility to common diseases such as atherosclerosis.

Publication Title

Identification of inflammatory gene modules based on variations of human endothelial cell responses to oxidized lipids.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE18791
Antiviral response dictated by choreographed cascade of transcription factors
  • organism-icon Homo sapiens
  • sample-icon 56 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The dendritic cell (DC) is a master regulator of immune responses. Pathogenic viruses subvert normal immune function in DCs through the expression of immune antagonists. Understanding how these antagonists interact with the host immune system requires knowledge of the underlying genetic regulatory network that operates during an uninhibited antiviral response. In order to isolate and identify this network, we studied DCs infected with Newcastle Disease Virus (NDV), which is able to stimulate innate immunity and DC maturation through activation of RIG-I signaling, but lacks the ability to evade the human interferon response. To analyze this experimental model, we developed a new approach integrating genome-wide expression kinetics and time-dependent promoter analysis. We found that the genetic program underlying the antiviral cell state transition during the first 18-hours post-infection could be explained by a single regulatory network. Gene expression changes were driven by a step-wise multi-factor cascading control mechanism, where the specific transcription factors controlling expression changed over time. Within this network, most individual genes are regulated by multiple factors, indicating robustness against virus-encoded immune evasion genes. In addition to effectively recapitulating current biological knowledge, we predicted, and validated experimentally, antiviral roles for several novel transcription factors. More generally, our results show how a genetic program can be temporally controlled through a single regulatory network to achieve the large-scale genetic reprogramming characteristic of cell state transitions.

Publication Title

Antiviral response dictated by choreographed cascade of transcription factors.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE76055
Regulation of enhancer dynamics by MED12
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

MED12 Regulates HSC-Specific Enhancers Independently of Mediator Kinase Activity to Control Hematopoiesis.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE12517
Differential gene expression in peripheral blood leukocytes as a function of estrogen
  • organism-icon Homo sapiens
  • sample-icon 45 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Gene expression profiling was carried out on peripheral blood mononuclear cells from 45 adult females. The primary research question is whether leukocyte gene expression differs in individuals with varying levels of estrogen signaling.

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact