refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 48 results
Sort by

Filters

Technology

Platform

accession-icon GSE10644
Characteristic Transcriptional Profiling of Rhythmic mRNA Expression in the Murine Distal Colon
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To identify a cohort of rhythmically expressed genes in the murine Distal Colon,microarrays were used to measure gene expression over a 24-hour light/dark cycle.The rhythmic transcripts were classified according to expression patterns, functions and association with physiological and pathophysiological processes of the colon including motility, colorectal cancer formation and inflammatory bowel disease.

Publication Title

Transcriptional profiling of mRNA expression in the mouse distal colon.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6104
Rat right heart pulmonary embolism microarray
  • organism-icon Rattus norvegicus
  • sample-icon 45 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Time and dose related expression profiles of rat right heart tissue in microsphere bead model for Pulmonary embolism

Publication Title

Transcriptional profile of right ventricular tissue during acute pulmonary embolism in rats.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE19060
Analysis of Meniscal Degeneration and Meniscal Gene Expression
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Menisci play a vital role in load transmission, shock absorption and joint stability. The current dogma is that the menisci simply protects the cartilage and play no role in osteoarthritis (OA) unless they are injured. However, there is increasing evidence suggesting that OA menisci may not merely be bystanders in the disease process of OA. This study sought: 1) to determine the prevalence of meniscal degeneration in OA patients, 2) to examine gene expression in OA meniscal cells compared to normal control meniscal cells, and 3) to test the hypothesis that OA meniscal cells are different from normal meniscal cells.

Publication Title

Analysis of meniscal degeneration and meniscal gene expression.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE93643
Gene expression profiles of livers from male LMNA+/+, LMNA flx/+, and LMNA flx/flx; Alb-Cre+ C57BL/6 mice fed normal chow or high fat diet
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

To investigate the molecular basis for male-specific steatohepatitis in Lamin A/C-deficient livers, microarray gene expression analysis was performed on total liver RNA isolated from 26- to 39-week-old, male LMNA+/+, LMNA flx/+, and LMNA flx/flx; Alb-Cre+ C57BL/6 mice fed either normal chow (NC) or high fat diet plus carbohydrate-supplemented water (HFD).

Publication Title

No associated publication

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE138324
Expression array of mouse bone marrow-derived macrophages and osteoclasts
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

In response to the cytokines, macrophage colony-stimulating factor and receptor activator of NF-kB ligand, monocyte precursors differentiate into bone marrow-derived macrophages (BMDMs) that ultimately fuse to form multi-nucleated osteoclasts, following a tightly controlled genetic program where specific sets of genes are differentially expressed.

Publication Title

Osteoclast-mediated bone resorption is controlled by a compensatory network of secreted and membrane-tethered metalloproteinases.

Sample Metadata Fields

Age, Specimen part, Time

View Samples
accession-icon GSE97254
Patients Experiencing Statin-Induced Myalgia Exhibit a Unique Program of Skeletal Muscle Gene Expression Following Statin Re-challenge
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Statins, the 3-hydroxy-3-methyl-glutaryl (HMG)-CoA reductase inhibitors, are widely prescribed for treatment of hypercholesterolemia. Although statins are generally well tolerated, up to ten percent of patients taking statins experience muscle related adverse events. Myalgia, defined as muscle pain without elevated creatinine phosphokinase (CPK) levels, is the most frequent reason for discontinuation of statin therapy. The mechanisms underlying statin-associated myalgia are not clearly understood. To elucidate changes in gene expression associated with statin-induced myalgia, we compared profiles of gene expression in the biopsied skeletal muscle from statin-intolerant patients undergoing statin re-challenge versus those of statin-tolerant controls. A robust separation of statin-intolerant and statin-tolerant cohorts was revealed by Principal Component Analysis of differentially expressed genes (DEGs). To identify putative gene expression and metabolic pathways that may be perturbed in skeletal muscles of statin intolerant patients, we subjected DEGs to Ingenuity Pathways (IPA) and DAVID (Database for Annotation, Visualization and Integrated Discovery) analyses. The most prominent pathways altered by statins included cellular stress, apoptosis, senescence and DNA repair (TP53, BARD1, Mre11 and RAD51); activation of pro-inflammatory immune response (CXCL12, CST5, POU2F1); protein catabolism, cholesterol biosynthesis, protein prenylation and RAS-GTPase activation (FDFT1, LSS, TP53, UBD, ATF2, H-ras). Based on these data we tentatively conclude that persistent myalgia in response to statins may emanate from cellular stress underpinned by mechanisms of post-inflammatory repair and regeneration. We also posit that this subset of individuals are genetically predisposed to eliciting altered statin metabolism and/or increased end-organ susceptibility that lead to a range of statin-induced myopathies. This mechanistic scenario further bolstered by the discovery that a number of single nucleotide polymorphisms (e.g., SLCO1B1, SLCO2B1 and RYR2) associated with statin myopathy were observed with increased frequency among statin-intolerant study subjects.

Publication Title

Patients experiencing statin-induced myalgia exhibit a unique program of skeletal muscle gene expression following statin re-challenge.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE100935
Gene expression data of human gastric tumors
  • organism-icon Homo sapiens
  • sample-icon 61 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Tumors of advanced gastric cancer patients were biopsied and subjected to gene expression profiling using the Affymetrix Human Genome U133 Plus 2.0 Arrays. Patients were then segregated into G1, G2 or G3 groups based on their tumor genomic profiles. Patients in the G1 and G3 cohorts were assigned SOX (oxaliplatin plus S-1) chemotherapy whereas those in the G2 cohort were given SP (cisplatin plus S-1) regimen.

Publication Title

Real-Time Tumor Gene Expression Profiling to Direct Gastric Cancer Chemotherapy: Proof-of-Concept "3G" Trial.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE109403
Proteogenomic Analysis of Medulloblastoma
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Proteomic analysis of Medulloblastoma reveals functional biology with translational potential.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE109401
Proteogenomic Analysis of Medulloblastoma [gene expression microarray]
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

These gene expression microarrays were performed as part of a project aiming to integrate quantitative proteomic, gene expression and epigenetic data from the childhood brain tumor medulloblastoma.

Publication Title

Proteomic analysis of Medulloblastoma reveals functional biology with translational potential.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE26685
Coordinated Chromatin Remodeling induced by Demethylation requires SRCAP mediated H2A.Z exchange
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HumanWG-6 v3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Gene reactivation by 5-aza-2'-deoxycytidine-induced demethylation requires SRCAP-mediated H2A.Z insertion to establish nucleosome depleted regions.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Cell line, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact